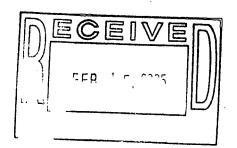
Draft Closeout Report for IHSS Group 900-12


East Trenches

T-5 (IHSS NE-111.2), T-6 (IHSS NE-111.3), T-8 (IHSS NE-111.5), T-9a (IHSS NE-111.6a), T-9b (IHSS NE-111.6b), T-10 (IHSS NE-111.7), and T-11 (IHSS NE-111.8)

Approval received from the U.S. Environmental Protection Agency, Region VIII

Approval letter contained in the Administrative Record.

).

January 2005

ADMIN RECORD BZ-A-000800

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	1
1.0	INTRODUCTION	1
2.0	SITE CHARACTERIZATION	3
2.1 2.2 2.3 3.0	Accelerated Action Characterization Data	10
4.0	CONFIRMATION SAMPLING	26
5.0	POST-REMEDIATION CONDITIONS	29
6.0	SUBSURFACE SOIL RISK SCREEN	32
7.0	STEWARDSHIP ANALYSIS	34
7.1 7.2 7.3 8.0	Near-Term Management Recommendations	35
9.0	RCRA UNIT CLOSURE	36
10.0	WASTE MANAGEMENT	36 .
11.0	SITE RECLAMATION	36
12.0	NO LONGER REPRESENTATIVE SAMPLING LOCATIONS	36
13.0	DATA QUALITY ASSESSMENT	36
13. 13. 13. 14.0	2 Verification and Validation of Results	38 55
15.0	REFERENCES	55
	LIST OF FIGURES	
_	re 1 IHSS Group 900-12 Locationre 2 IHSS Group 900-12 Pre-Accelerated Action Soil Sampling Locations and	
Eigur	Resultsre 3 IHSS Group 900-12 Characterization Sampling Locations and Results	
Figur	re 4 IHSS Group 900-12 Confirmation Sampling Locations and Results	28
Figur	re 5 IHSS Group 900-12 Trenches T-5, T-6 and T-8 Residual Soil Concentrations re 6 IHSS Group 900-12 Trenches T-9a, T-9b, T-10 and T-11 Residual Soil	30
-	Concentrations	3

LIST OF TABLES

Table 1 IHSS Group 900-12 Sampling and Analysis Specifications and Deviations From	
the IASAP Addendum	4
Fable 2 IHSS Group 900-12 Sampling and Analysis Summary Summary	ð
Table 3 IHSS Group 900-12Accelerated Action Soil Characterization Data	12
Table 4 IHSS Group 900-12 Surface Soil Data Summary Statistics	21
Table 5 IHSS Group 900-12 Subsurface Soil Data Summary Statistics	22
Table 6 RFCA Sums of Ratios Based on Characterization Sampling. Surface	
Radionuclide Soil Activities	24
Table 7 RFCA Sums of Ratios Based on Characterization Sampling, Surface Non-	
Radionuclide Concentrations	24
Table 8 Dates of Accelerated Action Activities	25
Table 9 IHSS Group 900-12 Confirmation Soil Sampling Data	27
Table 10 RFCA Sums of Ratios Based on Confirmation Sampling, Surface Radionuclide	
Soil Concentrations	29
Table 11 No Longer Representative Sampling Locations and Intervals	36
Table 12 LCS Summary	39
Table 13 LCS Evaluation Summary	41
Table 14 Surrogate Recovery Summary	44
Table 15 Field Blank Summary	45
Table 16 Sample MS Evaluation Summary	45
Table 17 Sample MSD Evaluation Summary	48
Table 18 Field Duplicate Sample Frequency Summary	51
Table 19 RPD Evaluation Summary	52
Table 20 Validation and Verification Summary	

LIST OF APPENDICES

Appendix A – Correspondence Appendix B – Project Photographs

ENCLOSURE

Compact Disc Containing Standardized Real and Quality Control Accelerated Action Data

ACRONYMS

AAESE Accelerated Action Ecological Screening Evaluation

AL action level Am americium

AR Administrative Record bgs below ground surface

BZ Buffer Zone

BZSAP Buffer Zone Sampling and Analysis Plan

CAS Chemical Abstracts Service

CD compact disc

CDPHE Colorado Department of Public Health and Environment

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

COC contaminant of concern

CRA Comprehensive Risk Assessment

cy cubic yard

DOE U.S. Department of Energy DQA Data Quality Assessment DQO data quality objective

EPA U.S. Environmental Protection Agency

ER Environmental Restoration

ER RSOP Environmental Restoration RFCA Standard Operating Protocol for

Routine Soil Remediation

ft feet

FY Fiscal Year

HPGe high-purity germanium HRR Historical Release Report

IA Industrial Area

IHSS Individual Hazardous Substance Site

IMP Integrated Monitoring Plan
K-H Kaiser-Hill Company, L.L.C.
LCS laboratory control sample
MDL method detection limit

µg/kg micrograms per kilogram

mg/kg milligrams per kilogram

MS matrix spike

MSD matrix spike duplicate

NA not applicable nCi/g nanocurie per gram

NFAA no further accelerated action NLR no longer representative

PARCCS precision, accuracy, representativeness, completeness, comparability and

sensitivity

PCB polychlorinated biphenyl pCi/g picocuries per gram

pCi/L picocuries per liter POE Point of Evaluation

Pu plutonium QC quality control

RAO remedial action objective

RCRA Resource Conservation and Recovery Act

RFCA Rocky Flats Cleanup Agreement

RFETS Rocky Flats Environmental Technology Site RI/FS Remedial Investigation/Feasibility Study

RL reporting limit

RPD relative percent difference

RSOP RFCA Standard Operating Protocol

SAP Sampling and Analysis Plan SBD sample beginning depth SD standard deviation SED sample end depth

SID South Interceptor Ditch

Site Rocky Flats Environmental Technology Site

SOR sum of ratios

SSRS Subsurface Soil Risk Screen
SVOC semivolatile organic compound

SWD Soil Water Database

U uranium

V&V verification and validation VOC volatile organic compound WRW wildlife refuge worker

EXECUTIVE SUMMARY

This Closeout Report summarizes accelerated action activities conducted at Individual Hazardous Substance Site (IHSS) Group 900-12, which is located at the Rocky Flats Environmental Technology Site (RFETS or Site). This IHSS Group consists of seven trenches (Trenches T-5, T-6, T-8, T-9a, T-9b, T-10 and T-11). Other trenches in the East Trenches area, including Trenches T-3, T-4 and T-7, will be addressed in updates to the Historical Release Report.

Activities were planned and executed in accordance with the Buffer Zone (BZ) Sampling and Analysis Plan (SAP) (BZSAP), BZSAP Addendum #BZ-04-02, the Environmental Restoration (ER) Rocky Flats Cleanup Agreement (RFCA) Standard Operating Protocol for Routine Soil Remediation (ER RSOP), and a RFETS ER Regulatory Contact Record dated September 2, 2004. Notification of the planned characterization and removal activities was provided in ER RSOP Notification #04-13.

Activities were conducted between January 28, 2004, and September 28, 2004, and included the following:

- Characterization of surface and near-surface soil in the seven trenches; and
- Removal of soil in conformance with RFCA requirements.

Characterization sampling results indicated that some contaminant concentrations and activities exceeded wildlife refuge worker (WRW) action levels (ALs) in Trenches T-6, T-8 and T-9a, primarily in the fill material overlying the trench contents. In Trench T-6, plutonium-239/240 activities exceeded the WRW AL at 0 to 0.5 foot (ft), 0.5 to 2.5 feet (ft), and 2.5 to 4.5 ft below ground surface (bgs). In Trench T-8, plutonium-239/240 activities exceeded the WRW AL at 0 to 0.5 ft, 0.5 to 2.5 ft, 2.5 to 4.5 ft, and 4.5 to 6.5 ft bgs. Americium-241 activities exceeded the WRW AL at 0.5 to 2.5 ft and 2.5 to 4.5 ft bgs. In Trench T-9a, the benzo(a)pyrene concentration exceeded the WRW AL at 0.5 to 2.5 ft bgs

Elevated plutonium-239/240 and americium-241 activities resulted in soil removal and subsequent confirmation sampling. Confirmation sampling results indicate that the plutonium activity at one subsurface location exceeds the WRW AL (50 picocuries per gram); however, the activity is considerably less than 1 nanocurie per gram at a depth greater than 3 ft bgs. Based on RFCA and the Subsurface Soil Risk Screen (SSRS), additional soil removal at this and other locations with residual contamination is not required. In addition, results of the data quality assessment confirmed that the data collected and used were adequate for decision-making.

Removal activities were consistent with and contributed to the ER RSOP overall long-term remedial action objectives for RFETS soil. The removal of contaminated soil contributed to the protection of human health and the environment, because potential sources of contamination were removed. These actions also minimized the need for long-term maintenance and institutional or engineering controls. In addition, best management practices were used to prevent the spread of contamination (for example, erosion and dust

controls during the accelerated action). Clean fill was brought to the project site and used to backfill excavations and prevent large-scale ponding of precipitation.

No IHSS Group-specific, near-term management techniques, including engineered controls and environmental monitoring, are required because of environmental conditions remaining in IHSS Group 900-12. Excavation with the IHSS Group will continue to be controlled through the Site Soil Disturbance Permit process. Access will be restricted to minimize disturbance to newly revegetated areas. Site access and security controls and the Soil Disturbance Permit process will remain in place pending implementation of long-term controls.

The presence of residual radionuclides, metals, volatile organic compounds, semivolatile organic compounds, and polychlorinated biphenyls in soil will be further evaluated in the Sitewide Comprehensive Risk Assessment (CRA), which is part of the Remedial Investigation/Feasibility Study (RI/FS) that will be conducted for the Site. Potential ecological risk will be evaluated in the Accelerated Action Ecological Screening Evaluation and the ecological risk assessment portion of the Sitewide CRA. The need for and extent of any more general, long-term stewardship activities will also be evaluated in the RI/FS and will be proposed as part of the preferred alternative in the Proposed Plan for the Site. Institutional controls and other long-term stewardship requirements for Rocky Flats will ultimately be contained in the Corrective Action Decision/Record of Decision, any post-closure Colorado Hazardous Waste Act permit that may be required, and any post-RFCA agreement.

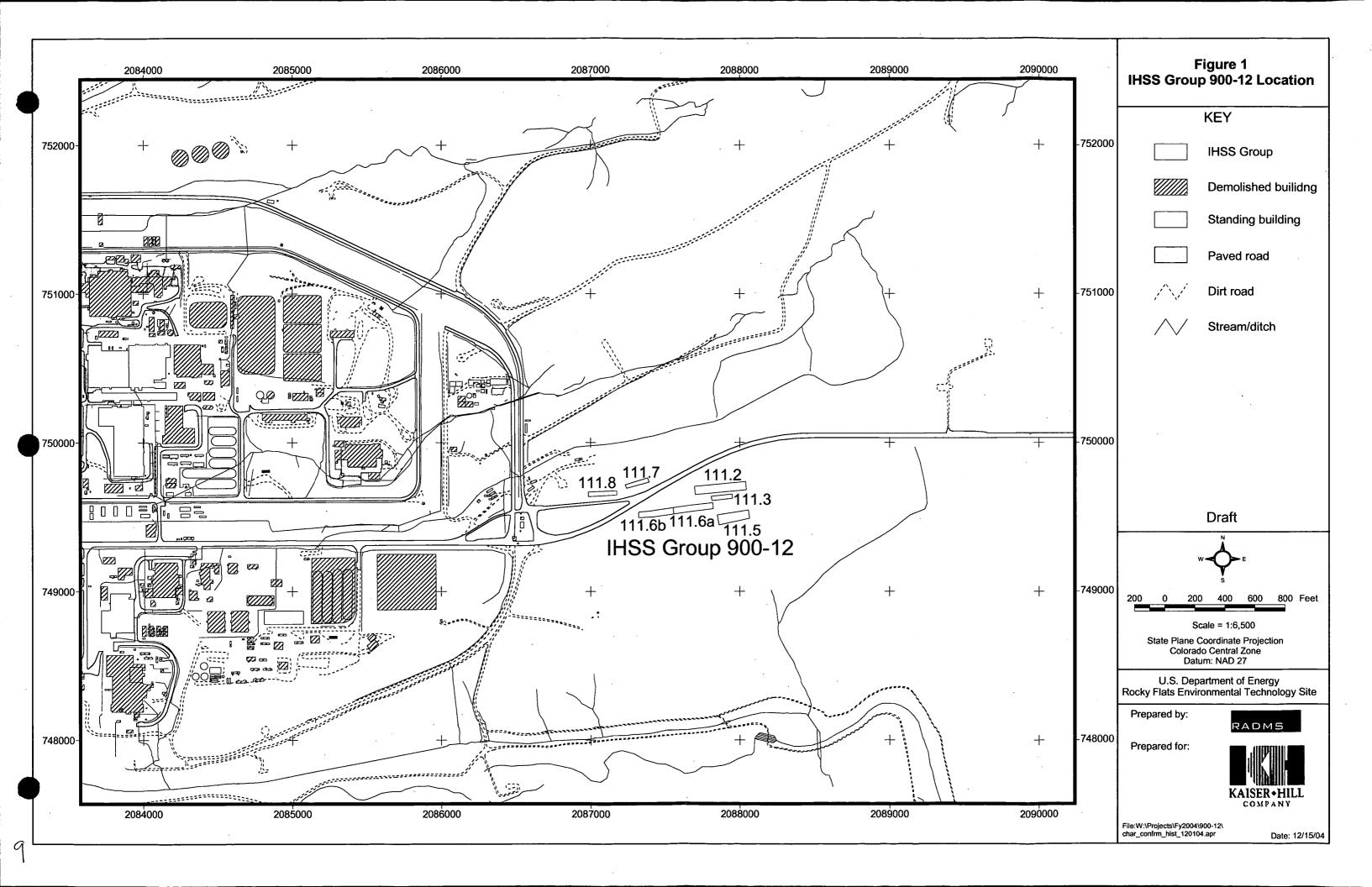
No long-term stewardship activities are recommended for IHSS Group 900-12 beyond the generally applicable Site requirements that may be imposed on this area in the future. Institutional controls that will be used as appropriate for this area include prohibitions on construction of buildings, restrictions on excavation or other soil disturbance, and prohibitions on groundwater pumping in the area of IHSS Group 900-12.

This Closeout Report and associated documentation will be retained as part of the Rocky Flats Administrative Record file. The specific long-term stewardship recommendations will also be summarized in the Rocky Flats Long-Term Stewardship Strategy.

Approval of this Closeout Report constitutes regulatory agency concurrence that this IHSS Group is a No Further Acclerated Action (NFAA) site. An NFAA decision is justified based on the following:

- NFAA required based on soil data;
- NFAA required based on the SSRS; and
- NFAA required based on the stewardship evaluation.

This information and NFAA determination will be documented in the Fiscal Year 2005 Historical Release Report.


1.0 INTRODUCTION

This Closeout Report summarizes the characterization and accelerated action activities conducted at Individual Hazardous Substance Site (IHSS) Group 900-12 at the Rocky Flats Environmental Technology Site (RFETS or Site) in Golden, Colorado. This IHSS Group, which is part of the East Trenches area, consists of seven trenches: T-5 (IHSS NE-111.2), T-6 (IHSS NE-111.3), T-8 (IHSS NE-111.5), T-9a (IHSS NE-111.6a), T-9b (IHSS NE-111.6b), T-10 (IHSS NE-111.7), and T-11 (IHSS NE-111.8). The location of IHSS Group 900-12 is shown on Figure 1. This closeout report addresses only the aforementioned IHSSs. Other trenches in the East Trenches area, including T-3, T-4 and T-7, will be addressed in updates to the Historical Release Report (HRR).

Accelerated action activities were planned and executed in accordance with the Buffer Zone (BZ) Sampling and Analysis Plan (SAP) (BZSAP) (DOE 2002a), BZSAP Addendum #BZ-04-02 (DOE 2003a), Environmental Restoration (ER) Rocky Flats Cleanup Agreement (RFCA) Standard Operating Protocol (RSOP) for Routine Soil Remediation (ER RSOP) (DOE 2003b), and an RFETS ER Regulatory Contact Record dated September 2, 2004 (Appendix A). Notification of planned activities was provided in ER RSOP Notification #04-13 (DOE 2004), which was approved by the U.S. Environmental Protection Agency (EPA), Region VIII, on June 17, 2004 (EPA 2004).

This report contains the information necessary to demonstrate attainment of cleanup objectives and closure of IHSS Group 900-12, including:

- Site characterization information
 - Description of site characterization activities, and
 - Site characterization data, including data tables and maps;
- Site accelerated action information
 - Description of the accelerated action,
 - Map of the actual remediation area, including dates and durations of specific remedial activities, and
 - Photographs documenting site characterization, remediation, and reclamation activities;
- Confirmation sampling data, including data tables and location maps, as well as a comparison of the confirmation data to applicable cleanup goals;
- Description of deviations from the ER RSOP;
- Description of the Subsurface Soil Risk Screen (SSRS);

- Description of near-term stewardship actions and long-term stewardship recommendations;
- Disposition of wastes;
- Site reclamation;
- Table of no longer representative (NLR) sampling locations that have been remediated. These data will be used to mark database records so they are not used in the sitewide Comprehensive Risk Assessment (CRA) or other Site analyses; and
- Data quality assessment (DQA), including comparison of confirmation data with project data quality objectives (DQOs).

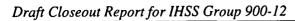
Approval of this Closeout Report constitutes regulatory agency concurrence that this IHSS Group is a no further accelerated action (NFAA) site. This information and NFAA determination will be documented in the Fiscal Year (FY) 2005 (05) HRR.

2.0 SITE CHARACTERIZATION

IHSS Group 900-12 characterization information consists of historical knowledge and analytical data. Historical information for the Group was derived from previous studies (DOE 1992-2003, 1996, 2001, 2002a, 2003a and 2004) and is summarized in Section 2.1. Analytical data for IHSS Group 900-12 (pre-accelerated action and accelerated action data) are summarized in Sections 2.1 and 2.2, respectively. A compact disc (CD) that contains the accelerated action data set, including real and quality control (QC) data, is enclosed with this report.

Accelerated action analytical data were collected in accordance with BZSAP Addendum #BZ-04-02 (DOE 2003a) and an RFETS ER Regulatory Contact Record dated September 2, 2004 (Appendix A). Soil from Trenches T-6, T-8, T-9a and T-9b were collected from multiple depths and analyzed for multiple analytes because limited historical data were available. Soil from Trenches T-5, T-10 and T-11 were collected only from the surface and near-surface (0.0 to 2.5 feet [ft]) because sufficient data existed for deeper soil. This soil was only analyzed for radionuclides because they are the only identified contaminants of concern (COCs). Sampling and analysis specifications, including media sampled, depth intervals and analytes, for the project are presented in Table 1. This table includes characterization and confirmation sampling and analysis specifications. Deviations from the BZSAP Addendum are also presented and explained in Table 1. A summary of all project sampling and analysis (characterization and confirmation) is presented in Table 2.

Table 1
IHSS Group 900-12 Sampling and Analysis Specifications and Deviations From the IASAP Addendum


				<u> </u>	is Specificatio				
Trench	Sampling Location	Planned Northing	Planned Easting	Actual Northing	Actual Easting	Actual Media	Actual Depth Interval (ft)	Actual Analyte	Comments
T-5	CZ41-008	749687.941	2087876.830	749687.891	2087876.886	Surface Soil Subsurface Soil	0.0 - 0.5 0.5 - 2.5	Radionuclides	Biased characterization sampling location. No
									significant change in location, depth or analytes.
T-5	CZ41-009	749690.479	2087932.656	749690.549	2087932.689	Surface Soil	0.0 - 0.5	Radionuclides	Biased characterization
				•		Subsurface Soil	0.5 – 2.5		sampling location. No
									significant change in location, depth or analytes.
T-6	CZ41-001	749637.905	2087861.492	749637.875	2087861.490	Surface Soil	0.0 - 0.5	Radionuclides	Biased characterization
\						Subsurface Soil	0.5 – 2.5	Metals	sampling location. No
						,	2.5 – 4.5	SVOCs	significant change in location,
ļ					İ		4.5 – 6.5	VOCs (except	depth or analytes.
}			,			İ	6.5 - 8.5	A interval) PCBs	·
70.6	DA41 001	740642 114	2007065 650	740642 100	2007065 610	Surface Soil	8.5 – 10.5 0.0 – 0.5	Radionuclides	Biased characterization
T-6	DA41-001	749643.114	2087965.658	749643.128	2087965.619	Subsurface Soil	0.5 - 2.5	Metals	sampling location. No
					}	Subsurface Son	2.5 – 4.5	SVOCs	significant change in location
		}					4.5 - 6.5	VOCs (except	or analytes. Added last 2
							6.5 – 8.5	A interval)	intervals to reach native soil.
		ļ			·		8.5 - 10.5	PCBs	
		Ì	·			1	10.5 – 12.0		
							12.0 – 13.5	l .	1
T-6	DA41-007	NA	NA .	749643.128	2087965.619	Subsurface Soil	3.8 – 4.3	Radionuclides	Biased confirmation sampling
							[location; bottom of
									excavation.
T-6	DA41-008	NA	NA	749649.881	2087966.190	Subsurface Soil	1.0 – 1.5	Radionuclides	Biased confirmation sampling location; north side wall.
T-6	DA41-009	NA	NA	749639.230	2087982.670	Subsurface Soil	. 1.0 – 1.5	Radionuclides	Biased confirmation sampling location; east side wall.
T-6	DA41-010	NA	NA	749626,278	2087965.228	Subsurface Soil	1.0 – 1.5	Radionuclides	Biased confirmation sampling
									location; south side wall.
T-6	DA41-011	NA	NA	749632.586	2087871.370	Subsurface Soil	1.0 - 1.5	Radionuclides	Biased confirmation sampling
	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	1	ł	<u> </u>	location; west side wall.

Draft Closeout Report for IHSS Group 900-12

Trench	Sampling	Planned	Planned	. Actual	Actual Easting	Actual Media	Actual Depth	Actual	Comments
	Location	Northing	Easting	Northing 3		<i>y</i>	Interval (ft)	Analyte	
T-8	CZ40-003	749520.718	2087930.502	749520.727	2087930.489	Surface Soil	0.0 - 0.5	Radionuclides	Biased characterization
						Subsurface Soil	0.5 - 2.5	Metals	sampling location. No
							2.5 – 4.5	SVOCs	significant change in location
			,			,	4.5 – 6.5	VOCs (except	or analytes. Added last 2
							6.5 – 8.5	A interval)	intervals to reach native soil.
						,	8.5 – 10.5	PCBs .	
				,			10.5 – 12.5		
						·	12.5 – 13.5		
T-8	CZ40-004	749508.999	2087864.096	749508.996	2087864.020	Surface Soil	0.0 - 0.5	Radionuclides	Biased characterization
						Subsurface Soil	0.5 – 2.5	Metals	sampling location. No
				,			2.5 – 4.5	SVOCs	significant change in location
		1					4.5 – 6.5	VOCs (except	or analytes. Added last 3
-						,	6.5 – 8.5	A interval)	intervals to reach native soil.
					,		8.5 – 10.5	. PCBs	,
							10.5 – 12.5		
							12.5 – 14.5		
							14.5 – 15.5		
T-8	CZ40-010	NA	NA	749520.739	2087916.849	Subsurface Soil	0.5 – 2.5	Radionuclides	Biased confirmation sampling
							,		location; bottom of
									excavation.
T-8	CZ40-011	NA	NA	749507.926	2087924.453	Subsurface Soil	0.5 – 2.5	Radionuclides	Biased confirmation sampling
									location; south side wall.
T-8	DA40-000	. NA	NA	749505.126	2087943.713	Subsurface Soil	0.5 ~ 2.5	Radionuclides	Biased confirmation sampling
									location; south side wall.
T-8	DA40-002	NA	NA	749525.286	2087945.180	Subsurface Soil	0.5 – 2.5	Radionuclides	Biased confirmation sampling
					·				location; north side wall.
T-8	DA41-002	NA	NA	749520.330	2087931.085	Subsurface Soil	3.0 – 3.5	Radionuclides	Biased confirmation sampling
							ļ		location; bottom of
									excavation.
T-8	DA41-003	NA	. NA	749523.545	2087931.170	Subsurface Soil	1.0 – 1.5	Radionuclides	Biased confirmation sampling
									location; north side wall.
T-8	DA41-004	NA	NA	749519.860	2087991.434	Subsurface Soil	1.0 – 1.5	Radionuclides	Biased confirmation sampling
									location; east side wall.
T-8	DA41-006	NA	NA	749507.642	2087873.537	Subsurface Soil	1.0 - 1.5	Radionuclides	Biased confirmation sampling
									location; west side wall.

	_
1	_
٠.	ノー

Trench	Sampling	Planned	Planned	Actual	Actual Easting	Actual Media	Actual Depth	Actual	Comments
āC.	Location	Northing	Easting	Northing			Interval (ft)	Analyte	
T9a	CY40-002	749559.780	2087619.304	749559.777	2087619.292	Surface Soil	0.0 – 0.5	Radionuclides	Biased characterization
						Subsurface Soil	0.5 – 2.5	Metals	sampling location. No
							2.5 – 4.5	. SVOCs	significant change in location
							4.5 – 6.5	VOCs (except	or analytes. Had partial
1							6.5 – 8.0	A interval)	recovery at 5 th interval.
1							8.0 - 10.0	PCBs	
T-9a	CZ41-002	NA	NA	749578.072	2087749.076	Surface Soil	0.0 – 0.5	Radionuclides	Characterization sampling
		,		•	<i>'</i>	Subsurface Soil	0.5 - 2.5	Metals	location added after BZSAP
						İ		SVOCs	Addendum #BZ-04-02 was
				1				VOCs (B	approved. Sampled and
ļ			1					interval only)	analyzed per ER RSOP
					<u></u>			PCBs	Notification #04-13.
T-9b	CX40-003	749538.946	2087498.205	749538.947	2087498.210	Surface Soil	0.0 - 0.5	Radionuclides	Biased characterization
-						Subsurface Soil	0.5 - 2.5	Metals	sampling location. No
							2.5 – 4.5	SVOCs	significant change in location
		•		•			4.5 – 6.5	VOCs (except	or analytes. Added last 2
					Ì		6.5 – 8.5	A interval)	intervals to reach native soil.
							8.5 - 10.5	PCBs	
							10.5 – 12.5		
	,						12.5 – 14.5		
T-9b	CX40-004	749524.709	2087422.668	749524.624	2087422.690	Surface Soil	0.0 - 0.5	Radionuclides	Biased characterization
1		•				Subsurface Soil	0.5 – 2.5	Metals	sampling location. No
							2.5 – 4.5	SVOCs	significant change in location,
ļ					. ,		4.5 – 6.5	VOCs (except	depth or analytes.
						.]	6.5 – 8.5	A interval)	
							8.5 – 10.5	PCBs	D
T-10	CW41-007	749718.640	2087267.611	749718.660	2087267.567	Surface Soil	0.0 – 0.5	Radionuclides	Biased characterization
						Subsurface Soil	0.5 – 2.5	ļ.	sampling location. No
1		,			•				significant change in location,
									depth or analytes.
T-10	CW41-008	749725.278	2087333.987	749725.290	2087333.945	Surface Soil	0.0 - 0.5	Radionuclides	Biased characterization
				·		Subsurface Soil	0.5 – 2.5	, ,	sampling location. No
		İ		,					significant change in location,
						0.0.0.0	10005	<u> </u>	depth or analytes.
T-11	CV41-014	749668.858	2087133.200	749668.825	2087133.202	Surface Soil	0.0 – 0.5	Radionuclides	Biased characterization
	ļ		1 : .			Subsurface Soil	0.5 – 2.5		sampling location. No
	,	-				,			significant change in location,
	1	J			<u> </u>		<u> </u>	<u>l</u>	depth or analytes.

Trench	Sampling Location	Planned Northing	Planned Easting	Actual Northing &	Actual Easting	Actual Media	Actual Depth Interval (ft)	Actual Analyte	Comments
T-11	CV41-015	749640.649	2086975.558	749640.645	2086975.587	Surface Soil Subsurface Soil	0.0 – 0.5 0.5 – 2.5	Radionuclides	Biased characterization sampling location. No significant change in location, depth or analytes.
T-11	CV41-016	749653.924	2087055.209	749653.981	2087055.271	Surface Soil Subsurface Soil	0.0 - 0.5 0.5 - 2.5	Radionuclides	Biased characterization sampling location. No significant change in location, depth or analytes.

PCB- Polychlorinated biphenyl SVOC - Semi-volatile organic compound

VOC - Volatile organic compound

NA – not applicable

Table 2
IHSS Group 900-12 Sampling and Analysis Summary

Category		
Number of Sampling Locations	. 7	28
Number of Samples	42	80
Number of Radionuclide Analyses	42	80
Number of Metal Analyses	42	53
Number of VOC Analyses	35	45
Number of SVOC Analyses	42	53
Number of PCB Analyses	42	53

2.1 East Trenches, Historical Information and Data

The East Trenches (T-3 through T-13) are variable in length, with the average length being approximately 250 ft. The trenches are approximately 10 ft deep and have a two-foot soil cover. The trenches were used during the period from July 29, 1954, through August 14, 1968, based on aerial photographs. The exact dates of operation are unknown. To date, no documentation has been found that records the timeframe during which any particular trench was receiving waste. Similarly, none of the interviewees for the HRR (DOE 1992 - 2003) were knowledgeable on dates of operation of individual trenches.

The East Trenches were used primarily for the disposal of sanitary wastewater treatment plant sludge. The sludge consisted primarily of concentrated organic matter typically present in sanitary wastewater treatment plant sludge. Additional material, such as flattened drums that had contained radioactively contaminated oil, was disposed in Trenches T-3 and T-4 and potentially in T-5 through T-11. Other materials were disposed in Trenches T-4, T-9 and T-11, including potentially radioactively contaminated asphalt planking (approximately 130,000 square feet) from the re-design of Solar Evaporation Pond 207A in T-4 and T-11 in 1963, and scrap metal and miscellaneous debris in T-9. Also, an employee recalled that laboratory waste may have been disposed of in Trench T-13. In addition, miscellaneous debris is known or suspected in all the trenches.

Pre-accelerated action data are presented on Figure 2. Only data greater than background means plus two standard deviations (SDs) (for radionuclides and metals) or method detection limits (MDLs) (for organic compounds) are presented. The data show that soil from one location in Trench T-8 and one location in Trench T-10 had contaminant concentrations or activities greater than the wildlife refuge worker (WRW) ALs. In Trench T-8, at Sampling Location 12795, one americium (Am)-241 activity, two plutonium (Pu)-239/240 activities, and one chromium concentration exceeded WRW ALs. In Trench T-10, at Sampling Location 10395, two benzo(a)pyrenne concentrations exceeded the WRW AL. All exceedances occurred at depths greater than 3 ft below ground surface (bgs), and Pu-239/240 and Am-241 activities were considerably less than 1 nanocurie per gram (nCi/g). Therefore, exceedances did not require remediation (refer to Section 6.0). The purpose of these data was to help define potential COCs and accelerated action sampling locations.

THIS TARGET SHEET REPRESENTS AN OVER-SIZED MAP / PLATE FOR THIS DOCUMENT: (Ref: 05-RF-00085; KLW-005-05)

Draft Closeout Report for IHSS Group 900-12

East Trenches T-5 (IHSS NE 111.2), T-6 (IHSS NE-111.3), T-8 (IHSS NE 111.5), T-9a (IHSS NE 111.6a), T-9b (IHSS NE 111.6b), T-10 (IHSS NE 111.7), and T-11 (IHSS NE-111.8)

January 2005

Figure 2:

IHSS Group 900-12 Pre-Accelerated Action Soil Sampling Locations and Results

File: W:\Projects\Fy2004\900-12\char_confrm_hist_120104.apr

December 2, 2004

CERCLA Administrative Record Document, BZ-A-000800

U.S. DEPARTEMENT OF ENERGY ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

GOLDEN, COLORADO

2.2 Accelerated Action Characterization Data

Accelerated action soil sampling results for IHSS Group 900-12 are presented on Figure 3 and in Table 3. Only results greater than background means plus two SDs or reporting limits (RLs) are shown. WRW AL exceedances are shown in bold in Table 3 and in red on Figure 3. Pu-239/240 and uranium (U)-234 activities based on high-purity germanium (HPGe) results (derived from Am-241 and U-238 gamma spectroscopy results, respectively) are shown in Table 3 in italics. Summary statistics for the project analytical results (characterization and confirmation analysis) are presented in Tables 4 and 5 for surface soil and subsurface soil, respectively. All project data, retrieved from the RFETS Soil Water Database (SWD) on December 13, 2004, are provided on the enclosed CD. The CD contains standardized real and QC data (Chemical Abstracts Service [CAS] numbers, analyte names, and units).

Accelerated action data indicate WRW AL exceedances were present in soil collected from one sampling location at each of three trenches. At the Trench T-6 location, Pu-239/240 activities exceeded the WRW AL at 0 to 0.5 ft, 0.5 to 2.5 ft, and 2.5 to 4.5 ft bgs. At the Trench T-8 location, Pu-239/240 activities exceeded the WRW AL at 0 to 0.5 ft, 0.5 to 2.5 ft, 2.5 to 4.5 ft, and 4.5 to 6.5 ft bgs. Am-241 activities exceeded the WRW AL at 0.5 to 2.5 ft and 2.5 to 4.5 ft bgs. At the Trench T-9a location, the benzo(a)pyrene concentration exceeded the WRW AL at 0.5 to 2.5 ft below bgs. All Pu-239/240 and Am-241 activities in soil deeper than 3 ft bgs were considerably less than 1 nCi/g.

Elevated Pu-239/240 and Am-241 activities resulted in soil removal to 3 ft bgs (Section 3.0) and subsequent confirmation sampling (Section 4.0). The elevated benzo(a)pyrene concentration did not require soil removal based on RFCA and the SSRS (Section 6.0).

2.3 Sums of Ratios

RFCA sums of ratios (SORs) were calculated for the IHSS Group 900-12 sampling locations based on accelerated action analytical data for the COCs and the WRW ALs. Surface soil (0 - 2.5 ft) SORs were calculated for the radionuclides of concern (Am-241, Pu-239/240, and U-234, U-235, and U-238), and surface soil (0 - 0.5 ft) SORs were calculated for the non-radionuclides of concern (metals, VOCs and SVOCs excluding arsenic, aluminum, iron, manganese, and polynuclear aromatic hydrocarbons). Subsurface non-radionuclide soil concentrations are evaluated as part of the SSRS in Section 6.0.

SORs for radionuclides were calculated for all locations with analytical results greater than background means plus two SDs. Pu-239/240 activities are derived from Am-241 activities when Am-241 is measured using HPGe detection analysis. SORs for radionuclides, within the first 2.5 ft below grade, are presented in Table 6. As shown, SORs for radionuclides in surface soil were greater than 1 at 2 sampling intervals. These intervals had radionuclide activities greater than the WRW ALs, however, both intervals were remediated (refer to Sections 3.0 and 4.0) and are no longer representative (refer to Section 12.0).

THIS TARGET SHEET REPRESENTS AN OVER-SIZED MAP / PLATE FOR THIS DOCUMENT: (Ref: 05-RF-00085; KLW-005-05)

Draft Closeout Report for IHSS Group 900-12

East Trenches T-5 (IHSS NE 111.2), T-6 (IHSS NE-111.3), T-8 (IHSS NE 111.5), T-9a (IHSS NE 111.6a), T-9b (IHSS NE 111.6b), T-10 (IHSS NE 111.7), and T-11 (IHSS NE-111.8)

January 2005

Figure 3:

IHSS Group 900-12 Characterization Sampling Locations and Results

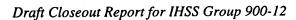
File: W:\Projects\Fy2004\900-12\char confrm hist 120104.apr

December 2, 2004

CERCLA Administrative Record Document, BZ-A-000800

U.S. DEPARTEMENT OF ENERGY ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

GOLDEN, COLORADO


IHSS Group 900-12Accelerated Action Soil Characterization Data Table 3

n&\k&	34900.0	 	31.000	40.000	Benzo(b)fluoranthene	č .0	0.0	2087498.205	946.888946	CX40-003
n % ∖k&	3490.0	•	43.000	92.000	Benzo(a)pyrene	č. 0	0.0	2087498.205	949.88.846	CX40-003
n g∕ kg	34900.0	-	000.72	39.000	Benzo(a)anthracene	٥.5	0.0	2087498.205	949.88.846	CX40-003
ш8/кв	0.000822	16902.000	ΑN	000.00081	munimulA	٥.5	0.0	2087498.205	946.88.846	CX40-003
n&\kg	0.0000201	-	180.000	390.000	4,6-Dinitro-2- lonədqlydəm	č. 0	0.0	2087498.205	946.882647	CX40-003
8/i)d	0.02	0.020	٧N	118.1	Plutonino-239/240	2.5	5.0	2087333.945	749725.290	CM41-008
g\iDq	0.97	0.020	AN	918.0	Americium-241	2.5	2.0	2087333.945	749725.290	CM41-008
8/iJq	0.02	990.0	ΨN	950.41	Plutonium-239/240	2.0	0.0	246.8887802	749725.290	CM41-008
g\iDq	0.97	620.0	ΑN	2.466	I 42-muioinəmA	c. 0	0.0	2087333.945	749725.290	CM41-008
g\iDq	0.8	0.120	VΝ	0.126	Uranium-235	2.5	č .0	2087267.567	099.817647	CM41-007
g\iDq	0.125	2.000	ΨN	3.076	Vranium-238	. 5'0	0.0	2087267.567	099.817647	CM41-007
g\iDq	0.8	≯ 60.0	VΝ	0.185	Craninas Uraninas U	2.0	0.0	792.7327802	099.817647	CM41-007
8\iDq	300.0	2.253	٧N	9∠0.£	Vraninn-234	2.0	0.0	792.7357802	099.817647	CM41-007
8/iJq	0.02	990.0	٧N	797.8	Plutonina-239/240	2.0	0.0	792.7327802	099.817647	CM41-002
g\iDq	0.97	620.0	ΑŅ	852.1	Americium-241	٥.5	0.0	2087267.567	099.81 <i>L</i> 67 <i>L</i>	CM41-007
g\iDq	0.125	1.490	ΥN	3.481	8£2-muins1U	2.5	č .0	172.2201802	186.53.981	CA41-016
g\iDq	0.8	0.120	AN	252.0	252-muinarU	2.5	č .0	172.2201802	186.539647	CA41-016
8\iDq	300.0	7.640	AN	184.8	₽£2-muinarU	2.5	2.0	172.2207802	186.539647	9I0-I\$AD
g\i)Qq	0.8	≯ 60.0	AN	111.0	Vranina-235	c. 0	0.0	172.2207802	186.523647	CA41-016
g\iDq	0.125	064.1	AN	2,241	Vranium-238	2.5	c .0	782.2763802	249.04845	CA41-012
8\iDq	0.02	990.0	ΨN	2.701	Plutonium-239/240	2.0	0.0	782.2763802	549.049647	CA41-012
g\iDq	0.97	620.0	٧N	474.0	Americium-241	č. 0	0.0	782.2763802	\$49.049647	CA41-012
g\iDq	0.8	0.120	AN	0.130	Vranium-235	2.5	č. 0	202.6617802	228.833647	CA41-014
g\iDq	0.8	1 60.0	ΑN	0.120	Vranium-235	2.0	0.0	208.5617802	\$28.8994 <i>T</i>	CA41-014
8\ti\04	0.02	990.0	ΑN	2.843	Plutonium-239/240	2.0	0.0	208.5817802	228.899647	CA41-014
g/iDg	0.9 <i>T</i>	620.0	AN	664.0	I 42-muioinəmA	٥.5	0.0	208.5617802	749668.825	CA41-014
)inU	MKM VT -	Васквтоппа	. KT	Mesult	Analyte	(K)	CAS (f)		Latitude	Location sboD

1400 - 3800 - 2400 - 300	5000 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		CDD	cen		Result	RL	Background	WRW AL	Unit
Location Code	Latitude	Longitude	SBD (ft)	SED (ft)	Analyte	Resuit		Dackground		OIII.
CX40-003	749538.946	2087498.205	0.0	0.5	Chromium	20.000	ΝA	16.990	268.0	mg/kg
CX40-003	749538.946	2087498.205	0.0	0.5	Chrysene	87.000	30.000	-	3490000.0	ug/kg
CX40-003	749538.946	2087498.205	0.0	0.5	Lithium	18.000	NA	11.550	20400.0	mg/kg
CX40-003	749538.946	2087498.205	0.0	0.5	Nickel	21.000	NA	14.910	20400.0	mg/kg
CX40-003	749538.946	2087498.205	0.0	0.5	Strontium	130.000	NA	48.940	613000.0	mg/kg·
CX40-003	749538.946	2087498.205	0.0	0.5	Uranium-234	4.036	NA	2.253	300.0	pCi/g
CX40-003	749538.946	2087498.205	0.0	0.5	Uranium-235	0.208	NA	0.094	8.0	pCi/g
CX40-003	749538.946	2087498.205	0.0	0.5	Uranium-238	4.036	NA	2.000	351.0	pCi/g
CX40-003	749538.946	2087498.205	0.5	2.5	· Benzo(a)pyrene	170.000	40.000	-	3490.0	ug/kg
CX40-003	749538.946	2087498.205	0.5	2.5	Chrysene	180.000	28.000	-	3490000.0	ug/kg
CX40-003	749538.946	2087498.205	0.5	2.5	Pyrene	380.000	130.000	-	22100000.0	ug/kg
CX40-003	749538.946	2087498.205	0.5	2.5	Uranium-234	3.666	NA	2.640	300.0	pCi/g
CX40-003	749538.946	2087498.205	0.5	2.5	Uranium-235	0.161	NA	0.120	8.0	pCi/g
CX40-003	749538.946	2087498.205	0.5	2.5	Uranium-238	3.666	NA	1.490	351.0	pCi/g
CX40-003	749538.946	2087498.205	2.5	4.5	Benzo(a)pyrene	85.000	41.000	-	3490.0	ug/kg
CX40-003	749538.946	2087498.205	2.5	4.5	Chrysene	84.000	28.000	-	3490000.0	ug/kg
CX40-003	749538.946	2087498.205	2.5	4.5	Indeno(1,2,3-cd)pyrene	41.000	23.000		34900.0	ug/kg
CX40-003	749538.946	2087498.205	2.5	4.5	Pyrene	150.000	- 140.000	-	22100000.0	ug/kg
CX40-003	749538.946	2087498.205	4.5	6.5	Benzo(a)pyrene	53.000	41.000	-	3490.0	ug/kg
CX40-003	749538.946	2087498.205	4.5	6.5	Chrysene	57.000	28.000	-	3490000.0	ug/kg
CX40-003	749538.946	2087498.205	4.5	6.5	Uranium-235	0.158	NA	0.120	8.0	pCi/g
CX40-003	749538.946	2087498.205	8.5	10.5	Chromium	82.000	NA	68.270	268.0	mg/kg
CX40-003	749538.946	2087498.205	12.5	14.5	Uranium-235	0.137	NA	0.120	8.0	pCi/g
CX40-004	749524.709	2087422.668	0.0	0.5	Aluminum	25000.000	NA	16902.000	228000.0	mg/kg
CX40-004	749524.709	2087422.668	0.0	0.5	Americium-241	6.795	NA	0.023	76.0	pCi/g
CX40-004	749524.709	2087422.668	0.0	0.5	Aroclor-1254	180.000	5.100	-	12400.0	ug/kg
CX40-004	749524.709	2087422.668	0.0	0.5	/ Barium	200.000	NA	141.260	26400.0	mg/kg
CX40-004	749524.709	2087422.668	0.0	0.5	Chromium	19.000	NA	16.990	268.0	mg/kg
CX40-004	749524.709	2087422.668	0.0	0.5	· Lithium	20.000	NA	11.550	20400.0	mg/kg

Location	Latitude	Longitude	SBD	SED	Analyte	Result	RL	Background	WRW AL	Unit
Code			(ft)	(ft)						
CX40-004	749524.709	2087422.668	0.0	0.5	Nickel	23.000	NA	14.910	20400.0	mg/kg
CX40-004	749524.709	2087422.668	0.0	0.5	Plutonium-239/240	38.732	NA	0.066	50.0	pCi/g
CX40-004	749524.709	2087422.668	0.0	0.5	Strontium	160.000	NA	48.940	613000.0	mg/kg
CX40-004	749524.709	2087422.668	0.0	0.5	Uranium-235	0.109	NA	0.094	8.0	pCi/g
CX40-004	749524.709	2087422.668	2.5	4.5	Strontium	230.000	· NA	211.380	613000.0	mg/kg
CX40-004	749524.709	2087422.668	4.5	6.5	Americium-241	0.168	NA	0.020	76.0	pCi/g
CX40-004	749524.709	2087422.668	4.5	6.5	Plutonium-239/240	0.955	NA	0.020	50.0	pCi/g
CX40-004	749524.709	2087422.668	6.5	8.5	Uranium-238	1.772	NA	1.490	351.0	pCi/g
CY40-002	749559.777	2087619.292	0.0	0.5	Americium-241	1.779	NA	0.023	76.0	pCi/g
CY40-002	749559.777	2087619.292	0.0	0.5	Aroclor-1254	3000.000	95.000	-	12400.0	ug/kg
CY40-002	749559.777	2087619.292	0.0	0.5	Benzo(a)pyrene	48.000	43.000	<u>-</u>	3490.0	ug/kg
CY40-002	749559.777	2087619.292	0.0	0.5	Chrysene	39.000	30.000	-	3490000.0	ug/kg
CY40-002	749559.777	2087619.292	0.0	0.5	Fluoranthene	69.000	24.000	-	27200000.0	ug/kg
CY40-002	749559.777	2087619.292	0.0	0.5	Mercury	0.250	NA	0.134	25200.0	mg/kg
CY40-002	749559.777	2087619.292	0.0	0.5	Plutonium-239/240	10.140	ŅA	0.066	50.0	pCi/g
CY40-002	749559.777	2087619.292	0.0	0.5	Uranium-234	27.810	ΝA	2.253	300.0	pCi/g
CY40-002	749559.777	2087619.292	0.0	0.5	Uranium-235	3.265	NA	0.094	8.0	pCi/g
CY40-002	749559.777	2087619.292	0.0	0.5	Uranium-238	27.810	NA	2.000	351.0	pCi/g
CY40-002	749559.777	2087619.292	0.5	2.5	2-Methylnaphthalene	83000.000	3600.000	-	20400000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5 ·	2.5	Acenaphthene	24000.000	3500.000	-	40800000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Americium-241	0.760	NA	0.020	76.0	pCi/g
CY40-002	749559.777	2087619.292	0.5	2.5	Anthracene	8700.000	2700.000	-	204000000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Aroclor-1254	730.000	25.000	-	12400.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Benzo(a)anthracene	5600.000	2800.000	-	34900.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Benzo(a)pyrene	4700.000	4500.000	-	3490.0	ug/kg
CY40-002	749559.777	2087619:292	0.5	2.5	Chrysene	11000.000	3100.000	-	3490000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Dibenzofuran	7000.000	4100.000	<u>-</u>	2950000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Fluoranthene	5200.000	2600.000	-	27200000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Fluorene	7100.000	3800.000	-	40800000.0	ug/kg

Location	Latitude	Longitude	SBD	SED	Analyte	Result	RL	Background	WRW AL	Unit
Code			(ft)	(ft) ·	taga ay San San San San San					
CY40-002	749559.777	2087619.292	0.5	2.5	n- Nitrosodiphenylamine	17000.000	3100.000	<u>-</u>	7810000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Plutonium-239/240	4.330	NA	0.020	50.0	pCi/g
CY40-002	749559.777	2087619.292	0.5	2.5	Pyrene	36000.000	15000.000	-	22100000.0	ug/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Uranium, Total	9.200	NA	3.040	2750.0	mg/kg
CY40-002	749559.777	2087619.292	0.5	2.5	Uranium-234	14.620	NA NA	2.640	300.0	pCi/g
CY40-002	749559.777	2087619.292	0.5	2.5	Uranium-235	1.483	NA	0.120	8.0	pCi/g
CY40-002	749559.777	2087619.292	0.5	2.5	Uranium-238	14.620	NA	1.490	351.0	pCi/g
CY40-002	749559.777	2087619.292	2.5	4.5	Aroclor-1254	210.000	4.700	-	12400.0	ug/kg
CY40-002	749559.777	2087619.292	- 2.5	4.5	Cadmium	1.800	NA	1.700	962.0	mg/kg
CY40-002	749559.777	2087619.292	2.5	4.5	Copper	180.000	NA	38.210	40900.0	mg/kg
CY40-002	749559.777	2087619.292	2.5	4.5	Lead	350.000	NA	24.970	1000.0	mg/kg
CY40-002	749559.777	2087619.292	2.5	4.5	Silver	42.000	NA	24.540	5110.0	mg/kg
CY40-002	749559.777	2087619.292	2.5	4.5	Uranium, Total	19.000	NA	3.040	2750.0	mg/kg
CY40-002	749559.777	2087619.292	2.5 ·	4.5	Uranium-238	2.507	NA	1.490	351.0	pCi/g
CY40-002	749559.777	2087619.292	2.5	4.5	Zinc	550.000	NA	139.100	307000.0	mg/kg
CY40-002	749559.777	2087619.292	4.5	6.5	Aroclor-1254	35.000	4.600	<u>-</u>	12400.0	ug/kg
CY40-002	749559.777	2087619.292	4.5	6.5	Benzo(a)pyrene	48.000	41.000	-	3490.0	ug/kg
CY40-002	749559.777	2087619.292	4.5	6.5	Chrysene	75.000	29.000	-	3490000.0	ug/kg
CY40-002	749559.777	2087619.292	4.5	6.5	Fluoranthene	36.000	23.000		27200000.0	ug/kg
CY40-002	749559.777	2087619.292	4.5	6.5	Pyrene	170.000	140.000		22100000.0	ug/kg
CY40-002	749559.777	2087619.292	4.5	6.5	Uranium-234	3.717	NA	2.640	300.0	pCi/g
CY40-002	749559.777	2087619.292	4.5	6.5	Uranium-235	0.191	NA	0.120	8.0	pCi/g
CY40-002	749559.777	2087619.292	4.5	6.5	Uranium-238	3.717	NA	1.490	351.0	pCi/g
CY40-002	749559.777	2087619.292	6.5	8.0	Uranium-234	5.497	NA	2.640	300.0	pCi/g
CY40-002	749559.777	2087619.292	6.5	8.0	Uranium-235	0.210	NA	0.120	8.0	pCi/g
CY40-002	749559.777	2087619.292	6.5	8.0	Uranium-238	5.497	NA	1.490	351.0	pCi/g
CY40-002	749559.777	2087619.292	8.0	10.0	2-Methylnaphthalene	57.000	33.000	<u>-</u>	20400000.0	ug/kg
CY40-002	749559.777	2087619.292	8.0	10.0	Uranium-234	3.547	NA	2.640	300.0	pCi/g

Location	Latitude	Longitude	SBD	SED	Analyte	Result	« RL	Background	WRW AL	Unit
Code			(ft)	(ft)		4				
CY40-002	749559.777	2087619.292	8.0	10.0	Uranium-235	0.220	NA	0.120	8.0	pCi/g
CY40-002	749559.777	2087619.292	8.0	10.0	Uranium-238	3.547	NA	1.490	351.0	pCi/g
CZ40-003	749520.727	2087930.489	0.0	0.5	Americium-241	14.840	NA	0.023	76.0	pCi/g
CZ40-003	749520.727	2087930.489	0.0	0.5	Chromium	17.000	NA	16.990	268.0	mg/kg
CZ40-003	749520.727	2087930.489	0.0	0.5	Lithium	18.000	NA	11.550	20400.0	mg/kg
CZ40-003	749520.727	2087930.489	0.0	0.5	Nickel	15.000	NA	14.910	20400.0	mg/kg
CZ40-003	749520.727	2087930.489	0.0	0.5	Plutonium-239/240	84.588	NA	0.066	50.0	pCi/g
CZ40-003	749520.727	2087930.489	0.0	0.5	Strontium	95.000	NA	48.940	613000.0	mg/kg
CZ40-003	749520.727	2087930.489	0.0	0.5	Uranium-235	0.190	NA _	0.094	8.0	pCi/g
CZ40-003	749520.727	2087930.489	0.5	2.5	Americium-241	132.700	NA	0.020	76.0	pCi/g
CZ40-003	749520.727	2087930.489	0.5	2.5	Aroclor-1254	46.000	4.800	-	12400.0	ug/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	Benzo(a)anthracene	58.000	27.000		34900.0	ug/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	Benzo(a)pyrene	64.000	44.000	-	3490.0	ug/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	Benzo(b)fluoranthene	45.000	31.000		34900.0	ug/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	Benzo(k)fluoranthene	57.000	35.000	-	349000.0	ug/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	- Cadmium	2.300	· NA	1.700	962.0	mg/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	Chrysene	70.000	30.000	-	3490000.0	ug/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	Fluoranthene	130.000	25.000		27200000.0	ug/kg
CZ40-003	749520.727	2087930.489	0.5	2.5	Plutonium-239/240	756.390	NA	0.020	50.0	pCi/g
CZ40-003	749520.727	2087930.489	2.5	4.5	Aluminum	39000.000	NA	35373.170	228000.0	mg/kg
CZ40-003	749520.727	2087930.489	2.5	4.5	Americium-241	122.000	' NA	0.020	76.0	pCi/g
CZ40-003	749520.727	2087930.489	2.5	4.5	Aroclor-1254	39.000	5.300	-	12400.0	ug/kg
CZ40-003	749520.727	2087930.489	2.5	4.5	Arsenic	14.000	NA	13.140	22.2	mg/kg
CZ40-003	749520.727	2087930.489	2.5	4.5	Cadmium	2.800	NA	1.700	962.0	mg/kg
CZ40-003	749520.727	2087930.489	2.5	4.5	Chrysene	45.000	33.000	-	3490000.0	ug/kg
CZ40-003	749520.727	2087930.489	2.5	4.5	Fluoranthene	65.000	27.000	-	27200000.0	ug/kg
CZ40-003	749520.727	2087930.489	2.5	4.5	Lithium	44.000	NA	34.660	20400.0	mg/kg
CZ40-003	749520.727	2087930.489	2.5	4.5	Plutonium-239/240	695.400	NA	0.020	50.0	pCi/g
CZ40-003	749520.727	2087930.489	2.5	4.5	Silver	25.000	. NA	24.540	5110.0	mg/kg

Property and the second			V-CDD	SED	ALIZADA	Result	RL	Background	WRW AL	Unit
Location Code	Latitude	Longitude	SBD (ft)	SED (ft)	Analyte	Kesmi	RL.	Dackground	WKW AL	Omt
CZ40-003	749520.727	2087930.489	4.5	• 6.5	Americium-241	17.340	NA	0.020	76.0	pCi/g
CZ40-003	749520.727	2087930.489	4.5	6.5	Aroclor-1254	36.000	4.500	, -	12400.0	ug/kg
CZ40-003	749520.727	2087930.489	4.5	6.5	Plutonium-239/240	98.838	NA	0.020	50.0	pCi/g
CZ40-003	749520.727	2087930.489	4.5	6.5	Uranium-235	0.236	NA	0.120	8.0	pCi/g
CZ40-003	749520.727	2087930.489	6.5	8.5	Uranium-235	0.217	ΝA	0.120	8.0	pCi/g
CZ40-003	749520.727	2087930.489	8.5	10.5	Americium-241	0.204	NA	0.020	76.0	pCi/g
CZ40-003	749520.727	2087930.489	8.5	10.5	Plutonium-239/240	1.160	NA	0.020	50.0	pCi/g
CZ40-003	749520.727	2087930.489	12.5	13.5	Americium-241	0.252	NA	0.020	76.0	pCi/g
CZ40-003	749520.727	2087930.489	12.5	13.5 !	Plutonium-239/240	1.438	NA	0.020	50.0	pCi/g
CZ40-003	749520.727	2087930.489	12.5	13.5	Uranium-235	0.398	NA	0.120	8.0	pCi/g
CZ40-004	749508.996	2087864.020	0.0	0.5	Aluminum	18000.000	NA	16902.000	228000.0	mg/kg
CZ40-004	749508.996	2087864.020	0.0	0.5	Lithium	15.000	NA	11.550	20400.0	mg/kg
CZ40-004	749508.996	2087864.020	0.0	0.5	Mercury	0.150	NA	0.134	25200.0	mg/kg
CZ40-004	749508.996	2087864.020	0.0	0.5	Nickel ·	18.000	NA	14.910	20400.0	mg/kg
CZ40-004	749508.996	2087864.020	0.0	0.5	Strontium	170.000	NA	48.940	613000.0	mg/kg
CZ40-004	749508.996	2087864.020	0.0	0.5	Uranium-234	4.049	NA	2.253	300.0	pCi/g
CZ40-004	749508.996	2087864.020	0.0	0.5	Uranium-235	0.233	NA	0.094	8.0	pCi/g
CZ40-004	749508.996	2087864.020	0.0	0.5	Uranium-238	4.049	· NA	2.000	351.0	pCi/g
CZ40-004	749508.996	2087864.020	6.5	8.5	Uranium-234	3.489	NA	2.640	300.0	pCi/g
CZ40-004	749508.996	2087864.020	6.5	8.5	Uranium-235	0.185	NA	0.120	8.0	pCi/g
CZ40-004	749508.996	2087864.020	6.5	8.5	Uranium-238	3.489	NA	1.490	351.0	pCi/g
CZ40-004	749508.996	2087864.020	8.5	10.5	Uranium-234	4.189	NA	2.640	300.0	pCi/g
CZ40-004	749508.996	2087864.020	8.5	10.5	Uranium-235	0.167	NA	0.120	8.0	pCi/g
CZ40-004	749508.996	2087864.020	8.5	10.5	Uranium-238	4.189	NA NA	1.490	351.0	pCi/g
CZ40-004	749508.996	2087864.020	12.5	14.5	Uranium-235	0.156	NA	0.120	8.0	pCi/g
CZ41-001	749637.875	2087861.490	0.0	0.5	Americium-241	1.250	NA	0.023	76.0	pCi/g
CZ41-001	749637.875	2087861.490	0.0	0.5	Benzo(a)anthracene	41.000	29.000	-	34900.0	ug/kg
CZ41-001	749637.875	2087861.490	0.0	0.5	Benzoic Acid	1100.000	340.000	•	1000000000.0	ug/kg
CZ41-001	749637.875	2087861.490	0.0	0.5	Chromium	18.000	NA	16.990	268.0	mg/kg

6	_	۷
	(5

Location	Latitude	Longitude	SBD	SED	Analyte	Result	RL	Background	WRW AL	Unit
Code			(ft)							_
CZ41-001	749637.875	2087861.490	0.0	0.5	Chrysene	49.000	33.000	-	3490000.0	ug/kg
CZ41-001	749637.875	2087861.490	0.0	0.5	Fluoranthene	74.000	27.000	-	27200000.0	ug/kg
CZ41-001	749637.875	2087861.490	0.0	0.5	Plutonium-239/240	6.620	NA NA	.0.066	50.0	pCi/g
CZ41-001	749637.875	2087861.490	0.5	2.5	Acetone	12.000	5.100	-	102000000.0	ug/kg
CZ41-001	749637.875	2087861.490	0.5	2.5	Methylene chloride	3.100	0.890	-	2530000.0	ug/kg
CZ41-001	749637.875	2087861.490	0.5	2.5	Plutonium-239/240	2.270	NA	0.020	50.0	pCi/g
CZ41-001	749637.875	2087861.490	2.5	4.5	Methylene chloride	2.800	0.870		2530000.0	ug/kg
CZ41-001	749637.875	2087861.490	4.5	6.5	Acetone	6.100	5.000	-	102000000.0	ug/kg
CZ41-001	749637.875	2087861.490	4.5	6.5	Methylene chloride	2.600	0.870	-	2530000.0	ug/kg
CZ41-001	749637.875	2087861.490	4.5	6.5	Plutonium-239/240	0.089	NA	0.020	50.0	pCi/g
CZ41-001	749637.875	2087861.490	6.5	8.5	Acetone	6.900	4.900	· •	102000000.0	ug/kg
CZ41-001	749637.875	2087861.490	6.5	8.5	Methylene chloride	2.900	0.850	-	2530000.0	ug/kg
CZ41-001	749637.875	2087861.490	8.5	10.5	Acetone	6.400	5.200		102000000.0	ug/kg
CZ41-001	749637.875	2087861.490	8.5	10.5	Methylene chloride	2.800	0.910	` -	2530000.0	ug/kg
CZ41-002	749578.072	2087749.076	0.0	0.5	Americium-241	0.648	. NA	0.023	76.0	pCi/g
CZ41-002	749578.072	2087749.076	0.0	0.5	Plutonium-239/240	3.694	NA	0.066	50.0	pCi/g
CZ41-002	749578.072	2087749.076	0.0	0.5	Strontium	73.000	NA	48.940	613000.0	mg/kg
CZ41-002	749578.072	2087749.076	0.0	0.5	Uranium-234	4.080	NA	2.253	300.0	pCi/g
CZ41-002	749578.072	2087749.076	0.0	0.5	Uranium-235	0.261	NA	0.094	8.0	pCi/g
CZ41-002	749578.072	2087749.076	0.0	0.5	Uranium-238	4.080	NA	2.000	351.0	pCi/g
CZ41-002	749578.072	2087749.076	0.5	2.5	Uranium-234	3.441	NA	2.640	300.0	pCi/g
CZ41-002	749578.072	2087749.076	0.5	2.5	Uranium-235	0.207	NA	0.120	8.0	pCi/g
CZ41-002	749578.072	2087749.076	0.5	2.5	Uranium-238	3.441	NA	1.490	351.0	pCi/g
CZ41-008	749687.891	2087876.886	0.0	0.5	Americium-241	1.301	NA.	0.023	76.0	pCi/g
CZ41-008	749687.891	2087876.886	0.0	0.5	Plutonium-239/240	7.416	NA	0.066	50.0	pCi/g
CZ41-008	749687.891	2087876.886	0.0	0.5	- Uranium-234	3.596	NA	2.253	300.0	pCi/g
CZ41-008	749687.891	2087876.886	0.0	0.5	Uranium-235	0.162	NA	0.094	8.0	pCi/g
CZ41-008	749687.891	2087876.886	0.0	0.5	Uranium-238	3.596	NA	2.000	351.0	pCi/g
CZ41-008	749687.891	2087876.886	0.5	2.5	Uranium-234	3.843	NA	2.640	300.0	pCi/g

Location	Latitude	Longitude	SBD	SED	Analyte	Result	RL:	Background	WRW'AL	Unit
Code			(ft)	(ft)						
CZ41-008	749687.891	2087876.886	0.5	2.5	Uranium-235	0.251	NA	0.120	8.0	pCi/g
CZ41-008	749687.891	2087876.886	0.5	2.5	Uranium-238	3.843	NA	1.490	351.0	pCi/g
CZ41-009	749690.549	2087932.689	0.0	0.5	Americium-241	0.972	NA	0.023	76.0	pCi/g
CZ41-009	749690.549	2087932.689	0.0	0.5	Plutonium-239/240	5.542	NA	0.066	50.0	pCi/g
CZ41-009	749690.549	2087932.689	0.0	0.5	Uranium-234	3.641	NA	2.253	300.0	pCi/g
CZ41-009	749690.549	2087932.689	0.0	0.5	Uranium-235	0.216	NA	0.094	8.0	pCi/g
CZ41-009	749690.549	2087932.689	0.0	0.5	Uranium-238	3.641	NA	2.000	351.0	pCi/g
CZ41-009	749690.549	2087932.689	0.5	2.5	Americium-241	0.598	NA	0.020	76.0	pCi/g
CZ41-009	749690.549	2087932.689	0.5	2.5	Plutonium-239/240	3.410	NA	0.020	50.0	pCi/g
CZ41-009	749690.549	2087932.689	0.5	2.5	Uranium-234	3.318	NA	2.640	300.0	pCi/g
CZ41-009	749690.549	2087932.689	0.5	2.5	Uranium-235	0.274	NA	0.120	8.0	pCi/g
CZ41-009	749690.549	2087932.689	0.5	2.5	Uranium-238	3.318	NA	1.490	351.0	pCi/g
DA41-001	749643.128	2087965.619	0.0	0.5	Americium-241	41.720	NA	0.023	76.0	pCi/g
DA41-001	749643.128	2087965.619	0.0	0.5	Aroclor-1254	64.000	5.300	<u> </u>	12400.0	ug/kg
DA41-001	749643.128	2087965.619	0.0	0.5	Fluoranthene	57.000	27.000		27200000.0	ug/kg
DA41-001	749643.128	2087965.619	0.0	0.5	Lithium	15.000	NA	11.550	20400.0	mg/kg
DA41-001	749643.128	2087965.619	0.0	0.5	Mercury	0.210	NA	0.134	25200.0	mg/kg
DA41-001	749643.128	2087965.619	0.0	0.5	Plutonium-239/240	237.804	NA	0.066	50.0	pCi/g
DA41-001	749643.128	2087965.619	0.5	2.5	Americium-241	34.330	NA	0.020	76.0	pCi/g
DA41-001	749643.128	2087965.619	0.5	2.5	Aroclor-1254	150.000	4.900	-	12400.0	ug/kg
DA41-001	749643.128	2087965.619	0.5	2.5	Benzo(a)anthracene	46.000	27.000	-	34900.0	ug/kg
DA41-001	749643.128	2087965.619	0.5	2.5	Benzo(k)fluoranthene	43.000	35.000	-	349000.0	ug/kg
DA41-001	749643.128	2087965.619	0.5	2.5	Chrysene	57.000	31.000	<u> </u>	3490000.0	ug/kg
DA41-001	749643.128	2087965.619	0.5	2.5	Fluoranthene	110.000	25.000	•	27200000.0	ug/kg
DA41-001	749643.128	2087965.619	0.5	2.5	Plutonium-239/240	195.681	NA	0.020	50.0	pCi/g
DA41-001	749643.128	2087965.619	0.5	2.5	Uranium-234	4.328	NA	2.640	300.0	pCi/g
DA41-001	749643.128	2087965.619	0.5	2.5	Uranium-235	. 0.291	NA	0.120	8.0	pCi/g
DA41-001	749643.128	2087965.619	0.5	2.5	Uranium-238	4.328	NA	1.490	351.0	pCi/g
DA41-001	749643.128	2087965.619	2.5	4.5	Americium-241	21.610	NA	0.020	76.0	pCi/g

Location Code	Latitude	Longitude	SBD (ft)	SED (ft)	Analyte	Result	- RL	Background	WRW AL	Unit
DA41-001	749643.128	2087965.619	2.5	4.5	Aroclor-1254	180.000	4.800	_	12400.0	ug/kg
DA41-001	749643.128	2087965.619	2.5	4.5	Fluoranthene	41.000	25.000	-	27200000.0	ug/kg
DA41-001	749643.128	2087965.619	2.5	4.5	Plutonium-239/240	.123.177	NA	0.020	50.0	pCi/g
DA41-001	749643.128	2087965.619	2.5	4.5	Uranium-234	5.303	NA	2.640	300.0	pCi/g
DA41-001	749643.128	2087965.619	2.5	4.5	Uranium-235	0.245	NA	0.120	8.0	pCi/g
DA41-001	749643.128	2087965.619	2.5	4.5	Uranium-238	5.303	NA	1.490	351.0	pCi/g
DA41-001	749643.128	2087965.619	6.5	8.5	Uranium-235	0.441	NA	0.120	8.0	pCi/g
DA41-001	749643.128	2087965.619	6.5	8.5	Uranium-238	1.548	NA	1.490	351.0	pCi/g

Bold denotes AL exceedance.

Italic type denotes values derived from HPGe measurement.

NA - not applicable

SBD - sample begin depth

SED - sample end depth

μg/kg – micrograms per kilogram mg/kg – milligrams per kilogram

pCi/g - picocuries per gram

Table 4

IHSS Group 900-12 Surface Soil Data Summary Statistics

Analyte	No. of Samples Analyzed	Detection Frequency	Average Concentration	Maximum Concentration	Reporting Limit	Background Mean Plus 2 SD	WRW AL	Unit
4,6-Dinitro-2-methylphenol	8	12.50%	390.000	390.000	180.000	NA	1020000	ug/kg
Aluminum	8	37.50%	20333.333	25000.000	NA	16902.000	228000	mg/kg
Americium-241	15	80.00%	6.190	41.720	NA	0.023	76	pCi/g
Aroclor-1254	8	37.50%	1081.333	3000.000	35.133	NA	12400	ug/kg
Barium	8	12.50%	200.000	200.000	NA	-141.260	26400	mg/kg
Benzo(a)anthracene	8	25.00%	40.000	41.000	28.000	NA	34900	ug/kg
Benzo(a)pyrene	8	25.00%	70.000	92.000	43.000	NA	3490	ug/kg
Benzo(b)fluoranthene	- 8	12.50%	40.000	40.000	31.000	NA	34900	ug/kg
Benzoic Acid	8	12.50%	1100.000	1100.000	340.000	NA	1000000000	ug/kg
Chromium	8	50.00%	18.500	20.000	NA	16.990	268	mg/kg
Chrysene	8	37.50%	58.333	87.000	31.000	NA	3490000	ug/kg
Fluoranthene	8	37.50%	66.667	74.000	26.000	NA	27200000	ug/kg
Lithium	8	62.50%	17.200	20.000	NA	11.550	20400	mg/kg
Mercury	8	37.50%	0.203	0.250	NA	0.134	25200	mg/kg
Nickel	8	50.00%	19.250	23.000	NA	14.910	20400	mg/kg
Plutonium-239/240	15	80.00%	35.242	237.804	NA	0.066	50	pCi/g
Strontium	8	62.50%	125.600	170.000	NA	48.940	613000	mg/kg
Uranium-234	15	46.67%	7.184	27.810	NA	2.253	300	pCi/g
Uranium-235	15	73.33%	0.460	3.265	NA	0.094	8	pCi/g
Uranium-238	· 15	46.67%	7.184	27.810	NA	2.000	351	pCi/g

Table 5

IHSS Group 900-12 Subsurface Soil Data Summary Statistics

IHSS Group 900-12 Subsurface Soil Data Summary Statistics										
Analyte			Average	Maximum	Reporting	Background	WRW AL	Unit		
	Samples	Frequency	Concentration	Concentration	Limit	Mean Plus 2 SD				
	Analyzed	24				21.7 <u>1.86 (13.85 482.13.6</u> 3)				
2-Methylnaphthalene	45	4.44%	41528.500	83000.000	1816.500	NA	20400000	ug/kg		
Acenaphthene	45	2.22%	24000.000	24000.000	3500.000	NA	40800000	ug/kg		
Acetone	45	8.89%	7.850	12.000	5.050	NA	102000000	ug/kg		
Aluminum	45	2.22%	39000.000	39000.000	NA	35373.170	228000	mg/kg		
Americium-241	65	29.23%	19.604	132.700	NA	0.020	76	pCi/g		
Anthracene	45	2.22%	8700.000	8700.000	2700.000	NA	204000000	ug/kg		
Aroclor-1254	45	17.78%	178.250	730.000	7.325	NA	12400	ug/kg		
Arsenic	45	2.22%	14.000	14.000	NA	13.140	22.2	mg/kg		
Benzo(a)anthracene	45	6.67%	1901.333	5600.000	951.333	NA	34900	ug/kg		
Benzo(a)pyrene	45	13.33%	853.333	4700.000	784.500	NA	3490	ug/kg		
Benzo(b)fluoranthene	45	2.22%	45.000	45.000	31.000	NA ⁻	34900	ug/kg		
Benzo(k)fluoranthene	45	4.44%	50.000	57.000	35.000	NA	349000	ug/kg		
Cadmium	45	6.67%	2.300	2.800	NA	1.700	962	mg/kg		
Chromium	45	2.22%	82.000	82.000	NA	68.270	268	mg/kg		
Chrysene	45	17.78%	1446.000	11000.000	413.375	NA :	3490000	ug/kg		
Copper	45	2.22%	180.000	180.000	NA	38.210	40900	mg/kg		
Dibenzofuran	45	2.22%	7000.000	7000.000	4100.000	NA	2950000	ug/kg		
Fluoranthene	45	13.33%	930.333	5200.000	454.167	NA	27200000	ug/kg		
Fluorene	45	2.22%	7100.000	7100.000	3800.000	NA	40800000	ug/kg		
Indeno(1,2,3-cd)pyrene	45	2.22%	41.000	41.000	23.000	NA	34900	ug/kg		
Lead	45	2.22%	350.000	350.000	NA	24.970	1000	mg/kg		
Lithium	45	2.22%	44.000	44.000	NA	34.660	20400	mg/kg		
Methylene chloride	45	11.11%	2.840	3.100	0.878	NA	2530000	ug/kg		
n-Nitrosodiphenylamine	45	2.22%	17000.000	17000.000	3100.000	NA	7810000	ug/kg		

45	2.22%	17000.000	17000.000		NA	3090000	ug/kg
65	40.00%	85.603	756.390		0.020	50	pCi/g
45	8.89%	9175.000	36000.000		NA	22100000	ug/kg
45	4.44%	33.500	42.000		24.540	5110	mg/kg
45	2.22%	230.000	230.000		211.380	613000	mg/kg
45	4.44%	14.100	19.000		3.040	2750	mg/kg
65 .	21.54%	4.741	14.620		2.640	300	pCi/g
65	33.85%	0.278	1.483		0.120	8	pCi/g
65	26.15%	4.147	14.620	` `	1.490	351	pCi/g
45	2.22%	550.000	550.000		139.100	307000	mg/kg
	65 45 45 45 45 65 65 65	65 40.00% 45 8.89% 45 4.44% 45 2.22% 45 4.44% 65 21.54% 65 33.85% 65 26.15%	65 40.00% 85.603 45 8.89% 9175.000 45 4.44% 33.500 45 2.22% 230.000 45 4.44% 14.100 65 21.54% 4.741 65 33.85% 0.278 65 26.15% 4.147	65 40.00% 85.603 756.390 45 8.89% 9175.000 36000.000 45 4.44% 33.500 42.000 45 2.22% 230.000 230.000 45 4.44% 14.100 19.000 65 21.54% 4.741 14.620 65 33.85% 0.278 1.483 65 26.15% 4.147 14.620	65 40.00% 85.603 756.390 45 8.89% 9175.000 36000.000 45 4.44% 33.500 42.000 45 2.22% 230.000 230.000 45 4.44% 14.100 19.000 65 21.54% 4.741 14.620 65 33.85% 0.278 1.483 65 26.15% 4.147 14.620	65 40.00% 85.603 756.390 0.020 45 8.89% 9175.000 36000.000 NA 45 4.44% 33.500 42.000 24.540 45 2.22% 230.000 230.000 211.380 45 4.44% 14.100 19.000 3.040 65 21.54% 4.741 14.620 2.640 65 33.85% 0.278 1.483 0.120 65 26.15% 4.147 14.620 1.490	65 40.00% 85.603 756.390 0.020 50 45 8.89% 9175.000 36000.000 NA 22100000 45 4.44% 33.500 42.000 24.540 5110 45 2.22% 230.000 230.000 211.380 613000 45 4.44% 14.100 19.000 3.040 2750 65 21.54% 4.741 14.620 2.640 300 65 33.85% 0.278 1.483 0.120 8 65 26.15% 4.147 14.620 1.490 351

Table 6
RFCA Sums of Ratios Based on Characterization Sampling. Surface Radionuclide
Soil Activities

Soil Activities									
Location Code	Latitude	Longitude	Start Depth (ft)	End Depth (ft)	SOR				
CV41-014	749668.825	2087133.202	0.0	0.5	0.046				
CV41-014	749668.825	2087133.202	0.5	2.5	0.016				
CV41-015	749640.645	2086975.587	0.0	0.5	0.030				
CV41-015	749640.645	2086975.587	0.5	2.5	0.006				
CV41-016	749653.981	2087055.271	0.0	0.5	0.014				
CV41-016	749653.981	2087055.271	0.5	2.5	0.051				
CW41-007	749718.660	2087267.567	0.0	0.5	0.138				
CW41-007	749718.660	2087267.567	0.5	2.5	0.016				
CW41-008	749725.290	2087333.945	0.0	0.5	0.154				
CW41-008	749725.290	2087333.945	0.5	2.5	0.020				
CX40-003	749538.946	2087498.205	0.0	0.5	0.051				
CX40-003	749538.946	2087498.205	0.5	2.5	0.043				
CX40-004	749524.709	2087422.668	0.0	0.5	0.437				
CY40-002	749559.777	2087619.292	0.0	0.5	0.691				
CY40-002	749559.777	2087619.292	0.5	2.5	0.323				
CZ40-003	749520.727	2087930.489	0.0	0.5	0.948				
. CZ40-003	749520.727	2087930.489	0,5	2.5	8.267				
CZ40-004	749508.996	2087864.020	0.0	0.5	0.054				
CZ41-001	749637.875	2087861.490	0.0	0.5	0.074				
CZ41-001	749637.875	2087861.490	0.5	2.5	0.020				
CZ41-002	749578.072	2087749.076	0.0	0.5	0.098				
CZ41-002	749578.072	2087749.076	0.5	2.5	0.047				
CZ41-008	749687.891	2087876.886	0.0	0.5	0.124				
CZ41-008	749687.891	2087876.886	0.5	2.5	0.055				
CZ41-009	749690.549	2087932.689	0.0	0.5	- 0.110				
CZ41-009	749690.549	2087932.689	0.5	2.5	0.092				
DA41-001	749643.128	2087965.619	0.0	0.5	2.599				
DA41-001	749643.128	2087965.619	0.5	2.5	2.202				

SORs for non-radionuclides were calculated for all surface locations where analyte concentrations were 10 percent or more of a contaminant's WRW AL. SORs for non-radionuclides are presented in Table 7. As shown, SORs for non-radionuclides in surface soil were less than 1.

Table 7
RFCA Sums of Ratios Based on Characterization Sampling,
Surface Non-Radionuclide Concentrations

	terito de esperator de la colo
Location Code	Surface Soil SOR

3.0 ACCELERATED ACTION

Remedial action objectives (RAOs) were developed and described in ER RSOP Notification #04-13 (DOE 2004). ER RSOP RAOs include the following:

- 1. Provide a remedy consistent with the RFETS goal of protection of human health and the environment;
- 2. Provide a remedy that minimizes the need for long-term maintenance and institutional or engineering controls; and
- 3. Minimize the spread of contaminants during implementation of accelerated actions.

The accelerated action remediation goals for IHSS Group 900-12 are listed below.

- Remove soil with non-radionuclide or uranium contaminant concentrations greater than RFCA WRW ALs to a depth of 6 inches.
- Remove soil with Pu-239/240 or Am-241 activities greater than RFCA WRW ALs to a depth of 3 ft, or to less than the applicable AL, whichever comes first.
- Once contaminated soil is removed, collect confirmation soil samples in accordance with the BZSAP (DOE 2002a).

Accelerated action activities were conducted between January 28, 2004, and September 28, 2004. Start and end dates of significant activities are listed in Table 8. Photographs of site activities are provided in Appendix B.

Table 8
Dates of Accelerated Action Activities

Activity	Start Date	End Date
Characterization Sampling	01/28/04	09/23/04
Removal Activities	07/01/04	09/23/04
Backfill Excavations	07/12/04	09/27/04
Site Reclamation	07/22/04	09/28/04

Soil within the IHSS Group was sampled and, based on the analytical results (Sections 2.1 and 2.2), was removed from IHSSs NE-111.3 (Trench T-6) and NE-111.5 (Trench T-8) in accordance with RFCA and the ER RSOP. The initial excavations at the two trenches were approximately 5 ft by 5 ft by 3 ft deep. Screening samples were collected from the bottoms of the excavations and the side walls, and analyzed using gamma spectroscopy. If screening results indicated Pu-239/240 activities greater than the WRW AL, additional soil was removed, and screening samples were collected from the new excavation boundaries. If screening results indicated Pu-239/240 activities less than the WRW AL, confirmation samples were sent to the off-site laboratory and analyzed using alpha spectroscopy.

Initial results from the bottom of the T-6 and T-8 excavations indicated Pu-239/240 activities were less than the WRW AL; however, screening results from side walls repeatedly exceeded the AL, and additional lateral excavation of the two trenches was

required. After soil excavation and screening were completed, 5 confirmation samples were collected from Trench T-6, and 8 confirmation samples were collected from Trench T-8 (refer to Table 1). Most of the exceedances were in the fill material that overlay the trench contents.

The Trench T-6 excavation was approximately 115 ft by 23 ft by 2.5 ft, and the Trench T-8 excavation was approximately 122 ft by 20 ft by 2.0 ft. Excavation boundaries are shown on Figure 4. The removed material, approximately 420 cubic yards (cy), was disposed of in intermodal and IP-1 containers as low-level radioactive waste. The T-6 and T-8 excavations were backfilled with clean fill from the Trailer 371 area. The areas were graded, and coconut matting was placed over the excavations. Documentation regarding approval to backfill is provided in Appendix A. All accelerated action objectives were achieved.

4.0 CONFIRMATION SAMPLING

Based on characterization results (Sections 2.1 and 2.2), soil removal and subsequent confirmation sampling were necessary. Soil removal activities are summarized in Section 3.0. Confirmation sampling was required to demonstrate that all residual radioactivity in soil is below WRW ALs or acceptable based on the SSRS. Sampling and analysis was conducted in accordance with the BZSAP (DOE 2002a). Specifications for confirmation sampling are presented in Table 1 and included in the summary of sampling and analysis (Table 2) and the summary statistics (Tables 4 and 5). Results are presented in Table 9 and shown on Figure 4. Only results greater than background means plus two SDs are shown. WRW AL exceedances are shown in Table 9 in bold and in red on Figure 4. All project data, retrieved from SWD on December 13, 2004, are provided on the enclosed CD.

All contaminant concentrations are less than the WRW ALs, with one exception. The Pu-239/240 activity in soil collected from Sampling Location DA41-002 (Trench T-8), at 3.0 – 3.5 ft bgs, is 270 pCi/g, and the WRW AL is 50 pCi/g. However, the activity is less than 1 nCi/g at a depth greater than 3 ft bgs, and based on RFCA and the SSRS (Section 6.0), additional removal is not required (RFCA Attachment 5, DOE et al. 2003).

SORs based on confirmation sampling results for radionuclides are presented in Table 10. SORs for radionuclides were only calculated for soil concentrations within the first 3 ft bgs. SORs for non-radionuclides were not calculated for surface soil concentrations because all non-radionuclide concentrations were less than ten percent of the respective WRW ALs. As shown, SORs for radionuclides are less than 1. The presence of radionuclides below 3 ft and non-radionuclides in subsurface soil are addressed in the SSRS (Section 6.0).

3

Table 9

IHSS Group 900-12 Confirmation Soil Sampling Data

1H55 Group 900-12 Confirmation Soil Sampling Data													
Location Code	Latitude	Longitude	SBD (ft)	SED (ft)	Analyte	Result	Background	WRW AL	Unit				
							ys : "Myksaich	HYNENE 14. AC	usi Ma				
CZ40-010	749520.739	2087916.849	0.5	2.5	Plutonium-239/240	0.265	0.02	50	pCi/g				
CZ40-011	749507.926	2087924.453	0.5	2.5	Americium-241	1.320	0.02	76	pCi/g				
CZ40-011	749507.926	2087924.453	0.5	2.5	Plutonium-239/240	8.880	. 0.02	50	pCi/g				
DA40-000	749505.126	2087943.713	0.5	2.5	Americium-241	0.340	0.02	. 76	pCi/g				
DA40-000	749505.126	2087943.713	0.5	2.5	Plutonium-239/240	3.740	0.02	50	pCi/g				
DA40-002	749525.286	2087945.180	0.5	2.5	Americium-241	0.093	0.02	76	pCi/g				
DA40-002	749525.286	2087945.180	0.5	2.5	Plutonium-239/240	0.361	0.02	50	pCi/g				
DA41-002	749520.330	2087931.085	3.0	3.5	Americium-241	31.100	0.02	76	pCi/g				
DA41-002	749520.330	2087931.085	3.0	3.5	Plutonium-239/240	270.000	0.02	50	pCi/g				
DA41-002	749520.330	2087931.085	3.0	3.5	Uranium-234	3.940	2.64	300	pCi/g				
DA41-003	749523.545	2087931.170	1.0	1.5	Americium-241	5.850	0.02	76	pCi/g				
DA41-003	749523.545	2087931.170	1.0	1.5	Plutonium-239/240	35.500	0.02	50	pCi/g				
DA41-004	749519.860	2087991.434	1.0	1.5	Plutonium-239/240	0.134	0.02	50	pCi/g				
DA41-006	749507.642	2087873.537	1.0	1.5	Plutonium-239/240	0.287	0.02	50	pCi/g				
. DA41-007	749643.128	2087965.619	3.8	4.3	Americium-241	0.492	0.02	76	pCi/g				
DA41-007	749643.128	2087965.619	3.8	4.3	Plutonium-239/240	2.070	0.02	50	pCi/g				
DA41-008	749649.881	2087966.190	1.0	1.5	Americium-241	2.000	0.02	76	pCi/g				
DA41-008	749649.881	2087966.190	1.0	1.5	Plutonium-239/240	12.900	0.02	50	pCi/g				
DA41-009	749639.230	2087982.670	1.0	1.5	Plutonium-239/240	0.162	0.02	50	pCi/g				
DA41-010	749626.278	2087965.228	1.0	1.5	Americium-241	1.000	0.02	76	pCi/g				
DA41-010	749626.278	2087965.228	1.0	1.5	Plutonium-239/240	6.260	0.02.	50	pCi/g				
DA41-011	749632.586	2087871.370	1.0	1.5	Plutonium-239/240	0.172	0.02	` 50	pCi/g				

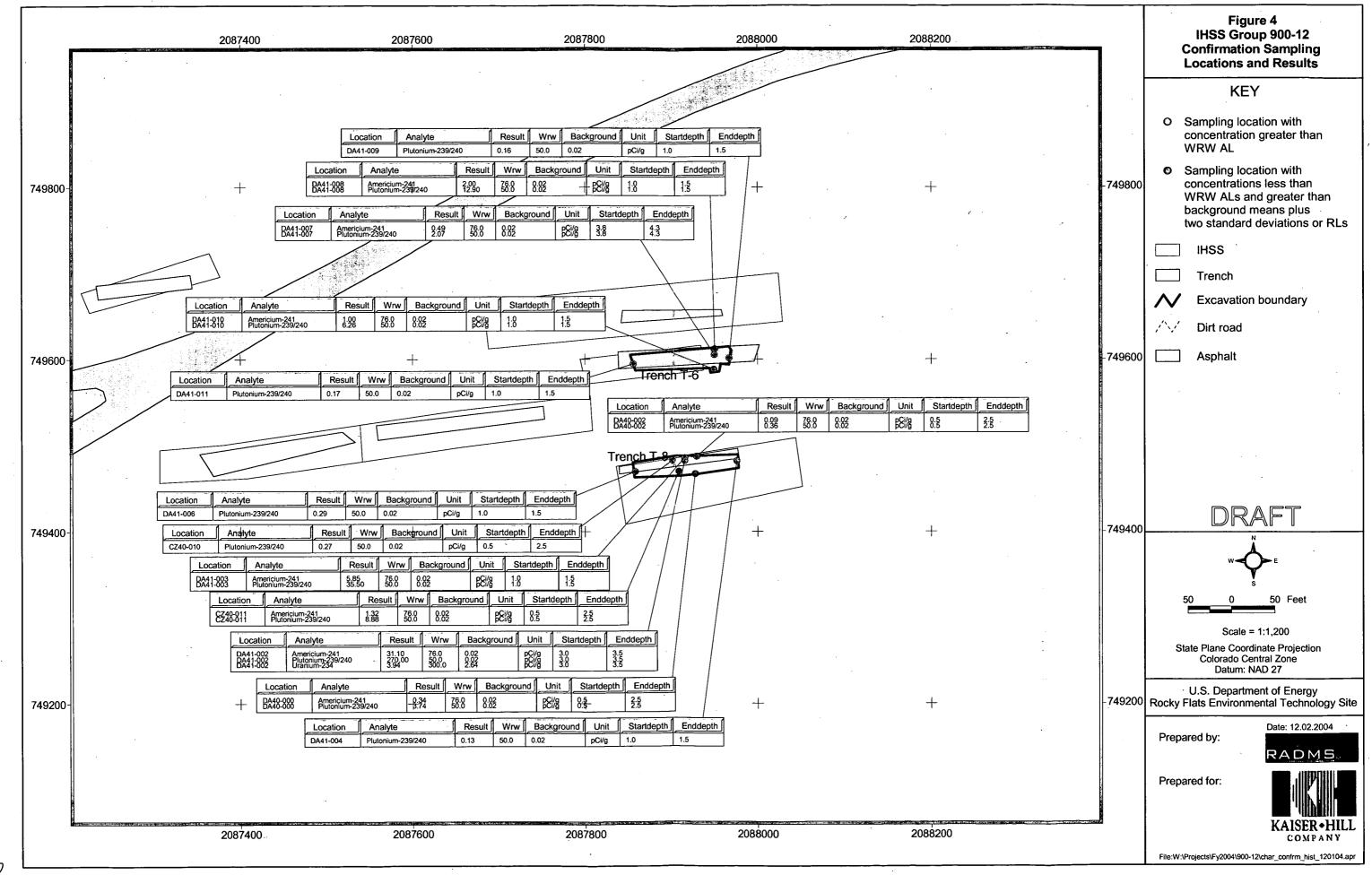


Table 10
RFCA Sums of Ratios Based on Confirmation Sampling,
Surface Radionuclide Soil Concentrations

Bui face Radionachue Bon Concentrations											
Location Code	Latitude	Longitude	SBD (ft)	SED (ft)	SOR						
CZ40-010	749520.739	2087916.849	0.5	2.5	0.002						
CZ40-011	749507.926	2087924.453	0.5	2.5	0.094						
DA40-000	749505.126	2087943.713	0.5	2.5	0.037						
DA40-002	749525.286	2087945.180	0.5	2.5	0.004						
DA41-003	749523.545	2087931.170	1	1.5	0.383						
DA41-004	749519.860	2087991.434	. 1	1.5	0.001						
DA41-006	749507.642	2087873.537	1	1.5	0.002						
DA41-008	749649.881	2087966.190	1	1.5	0.138						
DA41-009	749639.230	2087982.670	1	1.5	0.001						
DA41-010	749626.278	2087965.228	1	1.5	0.067						
DA41-011	749632.586	2087871.370	1	1.5	0.001						

5.0 POST-REMEDIATION CONDITIONS

As discussed in Section 3.0, contaminated soil were removed. Clean fill was brought to the project site and used to backfill excavations and contour the surface to prevent ponding of precipitation. Residual surface and subsurface soil concentrations greater than background means plus two SDs or RLs are shown on Figures 5 and 6. The presence of residual contamination was determined based on historical and accelerated action (characterization and confirmation) sampling results. NLR sampling locations (Section 12.0) are not included.

Residual surface and subsurface contaminant concentrations are less than RFCA WRW ALs, except as listed below.

- The Pu-239/240 activity at characterization Sampling Location CZ40-003 (Trench T-8), at 4.5 – 6.5 ft bgs, is 98.84 pCi/g, and the WRW AL is 50 pCi/g.
- The Pu-239/240 activity at confirmation Sampling Location DA41-002 (Trench T-8), at 3.0 3.5 ft bgs, is 270 pCi/g, and the WRW AL is 50 pCi/g.
- The Am-241 activity at historical Sampling Location 12795 (Trench T-8), at 3.0 8.0 ft bgs, is 104.9 pCi/g, and the WRW AL is 76 pCi/g.
- The chromium concentration at historical Sampling Location 12795 (Trench T-8), at 3.0 8.0 ft bgs, is 4,600 mg/kg, and the WRW AL is 268 mg/kg.

THIS TARGET SHEET REPRESENTS AN OVER-SIZED MAP / PLATE FOR THIS DOCUMENT: (Ref: 05-RF-00085; KLW-005-05)

Draft Closeout Report for IHSS Group 900-12

East Trenches T-5 (IHSS NE 111.2), T-6 (IHSS NE-111.3), T-8 (IHSS NE 111.5), T-9a (IHSS NE 111.6a), T-9b (IHSS NE 111.6b), T-10 (IHSS NE 111.7), and T-11 (IHSS NE-111.8)

January 2005

Figure 5:

IHSS Group 900-12 Trenches T-5, T-6 and T-8 Residual Soil Concentrations

File: W:\Projects\Fy2004\900-12\char_confrm_hist_120104.apr

December 14, 2004

CERCLA Administrative Record Document, BZ-A-000800

U.S. DEPARTEMENT OF ENERGY ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

GOLDEN, COLORADO

THIS TARGET SHEET REPRESENTS AN OVER-SIZED MAP / PLATE FOR THIS DOCUMENT: (Ref: 05-RF-00085; KLW-005-05)

Draft Closeout Report for IHSS Group 900-12

East Trenches T-5 (IHSS NE 111.2), T-6 (IHSS NE-111.3), T-8 (IHSS NE 111.5), T-9a (IHSS NE 111.6a), T-9b (IHSS NE 111.6b), T-10 (IHSS NE 111.7), and T-11 (IHSS NE-111.8)

January 2005

Figure 6:

IHSS Group 900-12 Trenches T-9a, T-9b, T-10 and T-11 Residual Soil Concentrations

File: W:\Projects\Fy2004\900-12\char_confrm_hist_120104.apr

December 14, 2004

CERCLA Administrative Record Document, BZ-A-000800

U.S. DEPARTEMENT OF ENERGY ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

GOLDEN, COLORADO

- The Pu-239/240 activity at historical Sampling Location 12795 (Trench T-8), at 3.0 8.0 ft bgs, is 642 pCi/g, and the WRW AL is 50 pCi/g.
- The Pu-239/240 activity at historical Sampling Location 12795 (Trench T-8), at 8.0 10.0 ft bgs, is 131.4 pCi/g, and the WRW AL is 50 pCi/g.
- The benzo(a)pyrene concentration at characterization Sampling Location CY40-002 (Trench T-9a), at 0.5 2.5 ft bgs, is $4,700 \mu g/kg$, and the WRW is $3,490 \mu g/kg$.
- The benzo(a)pyrene concentration at historical Sampling Location 10395 (Trench T-10), at 4-7 ft bgs, is $11,000 \mu g/kg$, and the WRW is $3,490 \mu g/kg$.
- The benzo(a)pyrene concentration at historical Sampling Location 10395 (Trench T-10), at 7 9 ft bgs, is 6,500 μg/kg, and the WRW is 3,490 μg/kg. Figure 5 IHSS Group 900-12 Residual Concentrations, Trenches T-5, T-6 and T-8

Based on RFCA and the SSRS (Section 6.0), these residual activities and concentrations do not require additional soil removal (RFCA Attachment 5, DOE et al. 2003). Pu-239/240 and Am-241 activities are less than 1 nCi/g occurring at a depth greater than 3 ft bgs. With the exception of the benzo(a)pyrene exceedance at 0.5 - 2.5 ft bgs, the other exceedances also occur at a depth greater than 3 ft bgs.

Residual contamination will be further evaluated in the Sitewide CRA and the Accelerated Action Ecological Screening Evaluation (AAESE).

6.0 SUBSURFACE SOIL RISK SCREEN

The SSRS follows the steps identified on Figure 3 in Attachment 5 of the RFCA (DOE et al 2003).

Screen 1 – Are the COC concentrations below RFCA Table 3 WRW soil ALs?

No. Residual COC concentrations in subsurface soil are less than the WRW ALs (RFCA Attachment 5, DOE et al. 2003), with nine exceptions (Section 5.0). Pu-239/240 and Am-241 activities are less than 1 nCi/g at depths greater than 3 ft bgs. With the exception of the benzo(a)pyrene exceedance at 0.5 - 2.5 ft bgs, the other exceedances occur at depths greater than 3 ft bgs.

Screen 2 – Is there a potential for subsurface soil to become surface soil (landslides and erosion areas identified on Figure 1 of RFCA)?

No. IHSS Group 900-12 is not located in an area susceptible to landslides or high erosion (Figure 1 of RFCA) (DOE et al 2003).

Screen 3 – Does subsurface soil radionuclide contamination exceed criteria in RFCA Section 5.3 and Attachment 14?

No. There are five residual radionuclide activities that exceed WRW ALs (Screen 1); however, the activities are less than 1 nCi/g occurring at depths greater than 3 ft bgs.

Based on RFCA, additional soil removal is not required (RFCA Attachment 5, DOE et al. 2003).

Screen 4 - Is there an environmental pathway and sufficient quantity of COCs that would cause an exceedance of surface water standards?

No. Contaminant migration via surface runoff and groundwater are two possible pathways whereby surface water could become contaminated from IHSS Group 900-12 soil. However, erosion is an insignificant pathway because the trenches are in a flat-lying area not prone to erosion. Runoff from the area encompassing Trenches T-5, T-6, T-9a, and T-9b flows into the South Interceptor Ditch (SID) and then into Pond C-2 (DOE 2003c). Water is monitored upstream of Pond C-2 and prior to discharge from Pond C-2. Runoff from the area encompassing Trenches T-10 and T-11 flows to the northeast into South Walnut Creek (below Pond B-4 and above Pond B-5) (DOE 2003c).

The nearest RFCA Point of Evaluation (POE) monitoring station associated with T-5, T-6, T-9a, and T-9b is SW027, located upstream of Pond C-2 (DOE 2003c). Am-241 and Pu-239/240 activities historically have exceeded water quality ALs at this monitoring station. However, most of the annual average Am-241 and Pu-239/240 activities are less than 0.15 picocurie per liter (pCi/L), and neither of the long-term Am-241 and Pu-239/240 averages (Water Year 97 - 01) is greater than 0.15 pCi/L. Also, all of the annual average metal concentrations are less than the ALs, and none of the 30-day averages were reportable. This monitoring station receives water from a large part of the Industrial Area (IA) (IA Areas 400, 600, 800 and 900), and surface water quality at the monitoring station cannot be attributable to any single IHSS Group.

Runoff from T-10 and T-11 flows through RFCA Point of Compliance monitoring station GS08, located downstream of Pond B-5 (DOE 2003c). The runoff does not flow through any upstream POE. Because GSO8 receives flow from a large part of the IA, water quality at this monitoring station can not be used to determine if runoff from Trenches T-10 and T-11 is adversely impacting water quality.

With respect to the groundwater pathway, the trenches are located near a hydraulic divide where water may migrate to the north/northeast or to the south/southeast depending on groundwater levels. Most of the time, groundwater monitoring wells in the vicinity of Trenches T-5, T-6, T-9a, and T-9b are dry. In 1992, there was sufficient groundwater in the area for sampling, and samples were collected from nearby wells 8391 and 8591. The samples at these wells contained VOCs at concentrations greater than RFCA groundwater Tier II ALs, but less than RFCA groundwater Tier I ALs. Pu-239/240, Am-241, benzo(a)pyrene and chromium (contaminants that exceeded soil WRW ALs) were not detected.

During times when local groundwater is present to the northeast side of the area, contamination is captured by the East Trenches Plume Groundwater Collection and Treatment System. Recent groundwater data from two plume extent wells located south and near Trenches T-5, T-6 and T-8 (Wells 04591 and 10194) indicate no VOC contamination (DOE 2002b). The two wells contained U-233/234 and U-238 activities that were greater than RFCA Tier II ALs, but less than background levels. During times when local groundwater is present to the south/southeast, any contaminated groundwater

joins the 903 Pad and Ryan's Pit plume. This plume has migrated toward the SID and Woman Creek drainage; however, discharge to surface water is very limited due to insufficient saturated thickness and dry conditions downgradient (DOE 1999a).

Groundwater in the area of Trenches T-10 and T-11 appears to flow to the north/northeast. This area is included in the pre-existing groundwater plume derived from the 903 Pad area. Four water quality/flow monitoring wells (12191, 12691, 3687, and 11891), associated with the Integrated Monitoring Plan (IMP), are located near these trenches. Concentrations of several VOCs exceeded groundwater Tier II ALs in all four wells since 2000. Results from one well included a Tier II exceedance of Am-241 in 2002. Earlier sampling results from these wells (1987 – 2000) indicated Tier II exceedances of total metals, including aluminum, antimony, barium, beryllium, cadmium, lead, manganese, mercury, nickel, and vanadium. Groundwater wells 3687, 11891 and 12691 had Tier I exceedances of VOCs (carbon tetrachloride, chloroform, dibromochloromethane, methylene chloride, tetrachloroethene, and trichloroethene) prior to 2000. Groundwater quality in the area is addressed in the Site Groundwater Interim Measure/Interim Remedial Action decision document.

7.0 STEWARDSHIP ANALYSIS

This stewardship evaluation, applicable to IHSS Group 900-12, is documented in the following sections. The regulatory agencies were informed of project activities and characterization results through frequent project updates, e-mails, telephone contacts, and personal contact throughout the project duration. The stewardship evaluation was conducted through ongoing consultation with the regulatory agencies. Copies of these documents are provided in Appendix A.

7.1 Current Site Conditions

As discussed in Section 3.0, accelerated actions at IHSS Group 900-12 consisted of removing contaminated soil and debris in Trenches T-6 and T-8. The excavations are shown on Figure 4. Based on the accelerated action, current conditions at IHSS Group 900-12 are listed below.

- Potential sources of contamination that existed in IHSS Group 900-12 were removed, including contaminated soil and debris.
- Residual surface and subsurface contaminant concentrations in soil are greater than background means plus two SDs or RLs throughout the IHSS Group.
- Residual surface and subsurface contaminant activities and concentrations are less than RFCA WRW ALs, with nine exceptions (Section 5.0). Based on RFCA and the SSRS (Section 6.0), the WRW exceedances do not require additional soil removal (RFCA Attachment 5, DOE et al. 2003). Pu-239/240 and Am-241 activities are less than 1 nCi/g occurring at a depth greater than 3 ft bgs. With the exception of the benzo(a)pyrene exceedance at 0.5 2.5 ft bgs, the other exceedances also occur at a depth greater than 3 ft bgs.

7.2 Near-Term Management Recommendations

No specific near-term management techniques are required. Contaminant concentrations in soil remaining at IHSS Group 900-12 do not trigger any further accelerated action. Near-term recommendations include the following:

- Excavation at the site will continue to be controlled through the Site Soil Disturbance Permit process; and
- Site access and security controls and the Soil Disturbance Permit process will remain in place pending implementation of long-term controls.

7.3 Long-Term Stewardship Recommendations

Based on remaining environmental conditions at IHSS Group 900-12, no IHSS Group-specific long-term stewardship activities are recommended beyond the generally applicable Site requirements. These requirements may be imposed on this area in the future. Institutional controls that will be used as appropriate for this area include the following:

- Prohibitions on construction of buildings;
- Restrictions on excavation or other soil disturbance; and
- Prohibitions on groundwater pumping in the area of IHSS Group 900-12.

No specific engineered controls or environmental monitoring are recommended as a result of the conditions remaining at IHSS Group 900-12. Likewise, no specific institutional or physical controls, such as fences, are recommended as a result of the conditions remaining at IHSS Group 900-12.

This Closeout Report and associated documentation will be retained as part of the Rocky Flats Administrative Record (AR) file. The specific long-term stewardship recommendations will also be summarized in the Rocky Flats Long-Term Stewardship Strategy.

IHSS Group 900-12 will be evaluated as part of the Sitewide CRA, which is part of the RCRA Remedial Investigation/Feasibility Study (RI/FS) that will be conducted for the Site. The need for and extent of any more general, long-term stewardship activities will also be evaluated in the RI/FS and will be proposed as part of the preferred alternative in the Proposed Plan for the Site. Institutional controls and other long-term stewardship requirements for Rocky Flats will be contained in the Corrective Action Decision/Record of Decision, any post-closure Colorado Hazardous Waste Act permit that may be required, and any post-RFCA agreement.

8.0 DEVIATIONS FROM THE ER RSOP

Removal methods and objectives did not deviate from the ER RSOP.

9.0 RCRA UNIT CLOSURE

IHSS Group 900-12 did not have any Resource Conservation and Recovery Act (RCRA) permitted waste management units, and therefore, RCRA closure was not required as part of this accelerated action.

10.0 WASTE MANAGEMENT

Approximately 420 cy of material were removed from Trenches T-6 and T-8. The removed material was disposed of in intermodal and IP-1 containers as low-level radioactive waste

11.0 SITE RECLAMATION

The T-6 and T-8 excavations were backfilled with approximately 420 cy of clean fill obtained from the Trailer 371 area. The areas were then graded, and coconut matting was placed over the excavations.

12.0 NO LONGER REPRESENTATIVE SAMPLING LOCATIONS

The historical sampling locations that were impacted by soil removal include one in Trench T-6 (11695) and two in Trench T-8 (12795 and 12895) (Figure 2). The characterization sampling locations that were impacted by soil removal include one in Trench T-6 (DA41-001) and one in Trench T-8 (CZ40-003) (Figure 3). These NLR locations are listed in Table 11. Related data have been marked in SWD and will not be used in the CRA or other site analyses.

Table 11
No Longer Representative Sampling Locations and Intervals

Sampling Location/ Interval	Trench	Easting	Northing
11695 / A-C	6	2087914.130	749638.000
DA41-001 / A-C	6	2087965.619	749643.128
12795 / A-C	8	2087948.250	749515.375
12895 / A-C	8	2087981.500	749527.188
CZ40-003 / A-C	8	2087930.489	749520.727

13.0 DATA QUALITY ASSESSMENT

The DQOs for this project are described in the IASAP (DOE 2001). All DQOs for this project were achieved based on the following:

- Regulatory agency-approved sampling program design (BZSAP Addendum #BZ-04-02 [DOE 2003a] and FY04 Notification #04-13), modified due to field conditions, in accordance with the IASAP (DOE 2001);
- Collection of samples in accordance with the sampling design; and

43

• Results of the DQA, as described in the following sections.

13.1 Data Quality Assessment Process

The DQA process ensures that the type, quantity, and quality of environmental data used in decision making are defensible, and is based on the following guidance and requirements:

- EPA QA/G-4, 1994a, Guidance for the Data Quality Objective Process;
- EPA QA/G-9, 1998, Guidance for the Data Quality Assessment Process, Practical Methods for Data Analysis; and
- U.S. Department of Energy (DOE) Order 414.1A, 1999b, Quality Assurance.

Verification and validation (V&V) of data are the primary components of the DQA. The final data are compared with original project DQOs and evaluated with respect to project decisions; uncertainty within the decisions; and quality criteria required for the data, specifically precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS). Validation criteria are consistent with the following RFETS-specific documents and industry guidelines:

- EPA 540/R-94/012, 1994b, USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review;
- EPA 540/R-94/013, 1994c, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review;
- Kaiser-Hill Company, L.L.C. (K-H), 2002, General Guidelines for Data Verification and Validation, DA-GR01-v2, October;
 - K-H, 2002, V&V Guidelines for Isotopic Determinations by Alpha Spectrometry, DA-RC01-v2, October;
 - K-H, 2002, V&V Guidelines for Volatile Organics, DA-SS01-v3, October;
 - K-H, 2002, V&V Guidelines for Semivolatile Organics, DA-SS02-v3, October;
 - K-H, 2002, V&V Guidelines for Metals, DA-SS05-v3, October; and
- Lockheed-Martin, 1997, Evaluation of Radiochemical Data Usability, ES/ER/MS-5.

This report will be submitted to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) AR for permanent storage 30 days after being provided to the Colorado Department of Public Health and Environment (CDPHE) and/or EPA.

13.2 Verification and Validation of Results

Verification ensures that data produced and used by the project are documented and traceable in accordance with quality requirements. Validation consists of a technical review of all data that directly support the project decisions so that any limitations of the data relative to project goals are delineated and the associated data are qualified accordingly. The V&V process defines the criteria that constitute data quality, namely PARCCS parameters. Data traceability and archival are also addressed. V&V criteria include the following:

- Chain-of-custody;
- Preservation and hold times;
- Instrument calibrations;
- Preparation blanks;
- Interference check samples (metals);
- Matrix spikes/matrix spike duplicates (MS/MSDs);
- Laboratory control samples (LCSs);
- Field duplicate measurements;
- Chemical yield (radiochemistry);
- Required quantitation limits/minimum detectable activities (sensitivity of chemical and radiochemical measurements, respectively); and
- Sample analysis and preparation methods.

Evaluation of V&V criteria ensures that PARCCS parameters are satisfactory (i.e., within tolerances acceptable to the project). Satisfactory V&V of laboratory quality controls are captured through application of validation "flags" or qualifiers to individual records.

Raw hard-copy data (for example, individual analytical data packages) are currently filed by report identification number and maintained by K-H Analytical Services Division; older hard copies may reside in the Federal Center in Lakewood, Colorado. Electronic data are stored in SWD.

Both real and QC data are included on the enclosed CD.

13.2.1 Accuracy

The following measures of accuracy were considered:

• LCS evaluation;

- Surrogate evaluation;
- Field blank evaluation; and
- Sample MS evaluation.

Results are compared to method requirements and project goals. The results of these comparisons are summarized for RFCA COCs where the result could impact project decisions. Particular attention is paid to those values near ALs when QC results could indicate unacceptable levels of uncertainty for decision-making purposes.

Laboratory Control Sample Evaluation

As indicated in Table 12, LCS analyses were run for all methods except for gamma spectroscopy. When the In-Situ Counting System technique is used for gamma spectroscopy, an internal standard approach is used instead of LCSs. The onsite laboratory that performs gamma spectroscopy is therefore not required to provide LCS data.

Table 12 LCS Summary

Test Method	Lab Batch	Laboratory Control Sample
Alpha Spec	4050209	Yes
Alpha Spec	4050210	Yes
Alpha Spec	4050213	Yes
Alpha Spec	4194609	Yes
Alpha Spec	4194613	Yes
Alpha Spec	4194615	Yes
Alpha Spec	4196502	Yes
Alpha Spec	4196503	Yes
Alpha Spec	4196508	Yes
Alpha Spec	4198424	Yes
Alpha Spec	4198431	Yes
Alpha Spec	4198454	Yes
Alpha Spec	4205498	Yes
Alpha Spec	4205499	Yes
Alpha Spec	4205501	Yes
Alpha Spec	4210283	Yes
Alpha Spec	4210284	Yes
Alpha Spec	4210288	Yes
SW-846 6010	4034481	Yes
SW-846 6010	4035187	Yes
SW-846 6010	4036538	Yes
SW-846 6010	4037184	Yes .
SW-846 6010	4040525	Yes
SW-846 6010	4041171	Yes

Test Method	Lab Batch	Laboratory Control Sample
SW-846 6010	4042543	Yes
SW-846 6010	4043323	Yes
SW-846 6010	4043529	Yes
SW-846 6010	4044174	Yes
SW-846 6010	4049580	Yes
SW-846 6010	4050156	Yes
SW-846 6010	4189133	Yes
SW-846 6010	4189536	Yes
SW-846 8082	4034465	Yes
SW-846 8082	4036514	Yes
SW-846 8082	4040522	Yes
SW-846 8082	4042540	Yes
SW-846 8082	4043522	Yes
SW-846 8082	4049578	Yes
SW-846 8082	4188569	Yes
SW-846 8260	4050366	Yes
SW-846 8260	MS1 VOA_040630A	Yes
SW-846 8260	MS2 VOA_040128A	Yes
SW-846 8260	MS2 VOA_040205A	Yes
SW-846 8260	MS2 VOA_040209A	Yes
SW-846 8260	MS2 VOA_040211A	Yes
SW-846 8260	MS3 VOA_040203B	Yes
SW-846 8260	MS3 VOA_040204A	Yes
SW-846 8270	4034468	Yes
SW-846 8270	4036520	Yes
SW-846 8270	4040523	Yes
SW-846 8270	4042541	Yes
SW-846 8270	4043521	Yes
SW-846 8270	4049579	Yes
SW-846 8270	4188570	Yes

The minimum and maximum LCS results are tabulated, by chemical, for the entire project in Table 13. LCS results that were outside of tolerances were reviewed to determine whether a potential bias might be indicated. LCS recoveries are not indicative of matrix effects because they are not prepared using site samples. LCS results do indicate whether the laboratory may be introducing a bias in the results. Recoveries reported above the upper limit may indicate the actual sample results are less than reported. Because this is environmentally conservative, no further action is needed. The analytes with unacceptable low recoveries were evaluated. If the highest sample result less than the AL, divided by the lowest LCS recovery for that analyte, is less than the AL, no further action is taken because any indicated bias is not great enough to affect project

decisions. As a result of this analysis, the LCS recoveries for this project did not impact project decisions.

Table 13
LCS Evaluation Summary

	LCS Evaluation Summary							
Test Method	CAS No.	Analyte	Min. of Result	Max. of Result	Result Unit			
SW-846 8260	71-55-6	1,1,1-Trichloroethane	95.86	123.8	%REC			
SW-846 8260	79-34-5	1,1,2,2-Tetrachloroethane	88.17	107	%REC			
SW-846 8260	79-00-5	1,1,2-Trichloroethane	87	105.4	%REC			
SW-846 8260	75-34-3	1,1-Dichloroethane	97.58	127.9	%REC			
SW-846 8260	75-35-4	1,1-Dichloroethene	98.72	143.8	%REC			
SW-846 8270	120-82-1	1,2,4-Trichlorobenzene	62	67	%REC			
SW-846 8260	120-82-1	1,2,4-Trichlorobenzene	78	121.5	%REC			
SW-846 8260	95-50-1	1,2-Dichlorobenzene	81	115.5	%REC			
SW-846 8260	107-06-2	1,2-Dichloroethane	95.24	120.9	%REC			
SW-846 8260	78-87 - 5	1,2-Dichloropropane	99.25	114.1	%REC			
SW-846 8260	106-46-7	1,4-Dichlorobenzene	83	116.1	%REC			
SW-846 8270	95-95-4	2,4,5-Trichlorophenol	62	73	%REC			
SW-846 8270	88-06-2	2,4,6-Trichlorophenol	62	72	%REC			
SW-846 8270	120-83-2	2,4-Dichlorophenol	64	68	%REC			
SW-846 8270	105-67-9	2,4-Dimethylphenol	63	71	%REC			
SW-846 8270	51-28-5	2,4-Dinitrophenol	47	70	%REC			
SW-846 8270	121-14-2	2,4-Dinitrotoluene	64	72	%REC			
SW-846 8270	606-20-2	2,6-Dinitrotoluene	63	70	%REC			
SW-846 8260	78-93-3	2-Butanone	46.13	122	%REC			
SW-846 8270	91-58-7	2-Chloronaphthalene	61	66	%REC			
SW-846 8270	95-57-8	2-Chlorophenol	65	70	%REC			
SW-846 8270	91-57-6	2-Methylnaphthalene	65	70	%REC			
SW-846 8270	95-48-7	2-Methylphenol	63	72	%REC			
SW-846 8270	88-74-4	2-Nitroaniline	63	67	%REC			
SW-846 8270	91-94-1	3,3'-Dichlorobenzidine	42	58	%REC			
SW-846 8270	534-52-1	4,6-Dinitro-2-methylphenol	55	67	%REC			
SW-846 8270	106-47-8	4-Chloroaniline	39	58	%REC			
SW-846 8260	108-10-1	4-Methyl-2-pentanone	74.33	109	%REC			
SW-846 8270	106-44-5	4-Methylphenol	64	71	%REC			
SW-846 8270	100-02-7	4-Nitrophenol	64	77	%REC			
SW-846 8270	83-32-9	Acenaphthene	59	66	%REC			
SW-846 8260	67-64-1	Acetone	36.85	100	%REC			
SW-846 6010	7429-90-5	Aluminum	97	109	%REC			
SW-846 8270	120-12-7	Anthracene	61	68	%REC			
SW-846 6010	7440-36-0	Antimony	91	98	%REC			
SW-846 8082	12674-11-2	Aroclor-1016	90	119	%REC			
SW-846 8082	11096-82-5	Aroclor-1260	84	119	%REC			
SW-846 6010	7440-38-2	Arsenic	91	100	%REC			

Test Method	CAS No.	Analyte	Min. of Result	Max. of Result	Result Unit
SW-846 6010	7440-39-3	Barium	97	106	%REC
SW-846 8260	71-43-2	Benzene	100.2	116.2	%REC
SW-846 8270	56-55-3	Benzo(a)anthracene	59	66	%REC
SW-846 8270	50-32-8	Benzo(a)pyrene	60	66	%REC
SW-846 8270	205-99-2	Benzo(b)fluoranthene	59	68	%REC
SW-846 8270	207-08-9	Benzo(k)fluoranthene	58	67	%REC
SW-846 8270	65-85-0	Benzoic acid	43	. 66	· %REC
SW-846 8270	100-51-6	Benzyl alcohol	67	73	%REC
SW-846 6010	7440-41-7	Beryllium	95	106	%REC
SW-846 8270	111-44-4	bis(2-Chloroethyl)ether	57	75	%REC
SW-846 8270	39638-32-9	bis(2-Chloroisopropyl)ether	59	70	%REC
SW-846 8270	117-81-7	bis(2-Ethylhexyl)phthalate	. 55	73	%REC
SW-846 8260	75-27-4	Bromodichloromethane	94.75	118.3	%REC
SW-846 8260	75-25-2	Bromoform	84	104	%REC
SW-846 8260	74-83-9	Bromomethane	76.97	137.4	%REC
SW-846 8270	85-68-7	Butylbenzylphthalate	58	68	%REC
SW-846 6010	7440-43-9	Cadmium	91	99	%REC
SW-846 8260	75-15-0	Carbon disulfide	76	137.8	%REC
SW-846 8260	56-23-5	Carbon tetrachloride	95.04	124	%REC
SW-846 8260	108-90-7	Chlorobenzene	87	113.4	%REC
SW-846 8260	75-00-3	Chloroethane	78.03.	144	%REC
SW-846 8260	67-66-3	Chloroform	95.37	125.1	%REC
SW-846 8260	74-87-3	Chloromethane	67.26	197.3	%REC
SW-846 6010	7440-47-3	Chromium	94	103	%REC
SW-846 8270	218-01-9	Chrysene	59	65	%REC
SW-846 8260	10061-01-5	cis-1,3-Dichloropropene	98	117	%REC
SW-846 6010	7440-48-4	Cobalt	93	100	%REC
SW-846 6010	7440-50-8	Copper -	92	103	%REC
SW-846 8270	84-74-2	Di-n-butylphthalate	60	71	%REC
SW-846 8270	117-84-0	Di-n-octylphthalate	49	68	%REC
SW-846 8270	53-70-3	Dibenz(a,h)anthracene	56	65	%REC
SW-846 8270	132-64-9	Dibenzofuran	64	71	%REC
SW-846 8260	124-48-1	Dibromochloromethane	87 ~	110.2	%REC
SW-846 8270	84-66-2	Diethylphthalate	62	71	%REC
SW-846 8270	131-11-3	Dimethylphthalate	63	68	%REC
SW-846 8260	100-41-4	Ethylbenzene	87	118.3	%REC
SW-846 8270	206-44-0	Fluoranthene	59	77	%REC
SW-846 8270	86-73-7	Fluorene	61	68	%REC
SW-846 8270	118-74-1	Hexachlorobenzene	61	66	%REC
SW-846 8260	87-68-3	Hexachlorobutadiene	74	125.3	%REC
SW-846 8270	87-68-3	Hexachlorobutadiene	62	66	%REC
SW-846 8270	77-47-4	Hexachlorocyclopentadiene	24	59	%REC

Test Method	CAS No.	Analyte	Min. of Result	Max. of Result	Result Unit
SW-846 8270	67-72-1	Hexachloroethane	65	69	%REC
SW-846 8270	193-39-5	Indeno(1,2,3-cd)pyrene	57	66	%REC
SW-846 6010	7439-89-6	Iron	97	- 110	%REC
SW-846 8270	78-59-1	Isophorone	61	68	%REC
SW-846 6010	7439-92-1	Lead	94	101	%REC
SW-846 6010	7439-93-2	Lithium	91	105 :	%REC
SW-846 6010	7439-96-5	Manganese	95	103	%REC
SW-846 6010	7439-97-6	Mercury	89	100	%REC
SW-846 8260	75-09-2	Methylene chloride	93.21	129.1	%REC
SW-846 6010	7439-98-7	Molybdenum	90	99	%REC
SW-846 8270	86-30-6	n-Nitrosodiphenylamine	66	84	%REC
SW-846 8270	621-64-7	n-Nitrosodipropylamine	63	71	%REC
SW-846 8270	91-20-3	Naphthalene	61	67	%REC
SW-846 8260	91-20-3	Naphthalene	80	110.7	%REC
SW-846 6010	7440-02-0	Nickel	94	100	%REC
SW-846 8270	98-95-3	Nitrobenzene	64	70	%REC
SW-846 8270	87-86-5	Pentachlorophenol	55	72	%REC
SW-846 8270	108-95-2	Phenol	63	70	%REC
SW-846 8270	129-00-0	Pyrene	57	65	%REC
SW-846 6010	7782-49-2	Selenium	88	.99	%REC
SW-846 6010	7440-22-4	Silver	91	98 .	%REC
SW-846 6010	7440-24-6	Strontium	· 96	104	%REC
SW-846 8260	100-42-5	Styrene	90	115	%REC
SW-846 8260	127-18-4	Tetrachloroethene	83	117.7	%REC
SW-846 6010	7440-31-5	Tin	86	95	%REC
SW-846 8260	108-88-3	Toluene	90	118.5	%REC
SW-846 8260	10061-02-6	trans-1,3-Dichloropropene	95	117	%REC
SW-846 8260	79-01-6	Trichloroethene	99.72	120.7	%REC
SW-846 6010	11-09-6	Uranium, Total	97	105	%REC
SW-846 6010	7440-62-2	Vanadium	94	103	%REC
SW-846 8260	75-01-4	Vinyl chloride	72.76	170.3	%REC
SW-846 8260	1330-20-7	Xylene	89	115	%REC
SW-846 6010	7440-66-6	Zinc	93	104	%REC

% REC – percent recovery

Surrogate Evaluation

The frequency of surrogate measurements, relative to each laboratory batch, is given in Table 14. Surrogate frequency was adequate based on at least one set per sample. The minimum and maximum surrogate results are also tabulated, by chemical, for the entire project. Surrogates are added to every sample, and therefore, surrogate recoveries only impact individual samples. Unacceptable surrogate recoveries can indicate potential matrix effects. The highest and lowest surrogate recoveries for this project were

reviewed, and no results affect project decisions. All organic compounds with surrogate recoveries had concentrations less than RLs.

Table 14
Surrogate Recovery Summary

VOC Surrogate Re	coveries			Trizlet (A. c.)
Number of Samples	Analyte	Minimum Concentration	Maximum Concentration	Result Unit
45	4-Bromofluorobenzene	89.45	123.3	%REC
45	Deuterated 1,2-dichloroethane	89.23	112	%REC
45	Deuterated toluene	83.16	104.2	%REC
SVOC Surrogate R	ecoveries		india in the said	
Number of Samples	Analyte	Minimum Concentration	Maximum Concentration	Result Unit
52	2-Fluorobiphenyl	52	74	%REC
52	2-Fluorophenol	53	83	%REC
52	Deuterated nitrobenzene	54	79	%REC
52.	p-Terphenyl-d14	. 48	77	%REC

Field Blank Evaluation

Results of the field blank analyses are given in Table 15. Detectable amounts of contaminants within the blanks, which could indicate possible cross-contamination of samples, are evaluated if the same contaminant is detected in the associated real samples. When the real result is less than 10 times the blank result for laboratory contaminants and 5 times the result for non-laboratory contaminants, the real result is eliminated. None of the chemicals were detected in the blanks at concentrations greater than one-tenth the AL. Therefore, blank contamination did not adversely impact project decisions.

Sample Matrix Spike Evaluation

The minimum and maximum MS results are summarized by chemical for the entire project in Table 16. Organic analytes with unacceptable low recoveries resulted in a review of the LCS recoveries. According to the EPA data validation guidelines, if organic MS recoveries are low, the data reviewer may use the MS and MSD results in conjunction with other QC criteria. In this case, the LCS recoveries were checked. For this project, these checks indicate no decisions were impacted for organic analytes. For inorganics, the associated maximum sample results were divided by the lowest percent recovery for each analyte. If the resulting number was less than the AL, decisions were not impacted, and no action was taken. For this project, all results were acceptable. Aluminum and iron had low recoveries of 0 percent; however, project decisions were not impacted. The WRW ALs for these two metals are at least three times greater than the highest sample result.

Table 15 Field Blank Summary

Laboratory	CAS	Analyte	Sample QC Code	Detected Result	Result Unit				
URS	78-93-3	2-Butanone	FB	13	ug/L				
URS	91-20-3	Naphthalene	/ FB	1.4	ug/L				
URS	91-20-3	Naphthalene	ТВ	2.1	ug/L				
URS	15117-96-1	Uranium-235	FB	0.18	pCi/g				
URS	15117-96-1	Uranium-235	RNS	0.112	pCi/g				
URS	7440-61-1	Uranium-238	FB	3.19	pCi/g				
URS	7440-61-1	Uranium-238	RNS	3.08	pCi/g				

Field blank (EB = equipment, field = FB, rinse = RNS, trip = TB) results greater than detection limits (not "U" qualified).

Table 16
Sample MS Evaluation Summary

Test Method	CAS No.	Analyte	Min. of	Max. of	Unit 📆	No. of	No. of Lab
			Result	Result		Samples	Batches
SW-846 8260	71-55-6	1,1,1-Trichloroethane	61.46	103	%REC	5	5
SW-846 8260	79-34-5	1,1,2,2-Tetrachloroethane	51.87	103	%REC	. 5	5
SW-846 8260	79-00-5	1,1,2-Trichloroethane	57.71	104.6	%REC	5	5
V-846 8260	75-34-3	1,1-Dichloroethane	64.34	105	%REC	5	5
√-846 8260	75-35-4	1,1-Dichloroethene	61.23	106	%REC	5	. 5
SW-846 8260	120-82-1	1,2,4-Trichlorobenzene	23.63	105	%REC	5	, 5
SW-846 8270	120-82-1	1,2,4-Trichlorobenzene	57	66	%REC	3	3
SW-846 8260	95-50-1	1,2-Dichlorobenzene	38.23	100	%REC	5	5
SW-846 8260	107-06-2	1,2-Dichloroethane	63.08	105	%REC	5	5
SW-846 8260	78-87-5	1,2-Dichloropropane	59.16	99	%REC	5	. 5
SW-846 8260	106-46-7	1,4-Dichlorobenzene	39.15	101	%REC	5	5
SW-846 8270	95-95-4	2,4,5-Trichlorophenol	61	68	%REC	3	3
SW-846 8270	88-06-2	2,4,6-Trichlorophenol	58	63	%REC	3	3
SW-846 8270	120-83-2	2,4-Dichlorophenol	58	65	%REC	3	3
SW-846 8270	105-67-9	2,4-Dimethylphenol	60	69	%REC	3	3
SW-846 8270	51-28-5	2,4-Dinitrophenol	27	43	%REC	3	3
SW-846 8270	121-14-2	2,4-Dinitrotoluene	59	. 68	%REC	3	3
SW-846 8270	606-20-2	2,6-Dinitrotoluene	60	69	%REC	3	3
SW-846 8260	78-93-3	2-Butanone	62.36	174.6	%REC	5	5
SW-846 8270	91-58-7	2-Chloronaphthalene	58	62	%REC	3	3
SW-846 8270	95-57-8	2-Chlorophenol	58	70	%REC	3	3
SW-846 8270	91-57-6	2-Methylnaphthalene	59	68	%REC	3	3
SW-846 8270	95-48-7	2-Methylphenol	59	70.	%REC	3	3
SW-846 8270	88-74-4	2-Nitroaniline	60	66	%REC	3	3
7-846 8270	91-94-1	3,3'-Dichlorobenzidine	45	57	%REC	3	3
SW-846 8270	534-52-1	4,6-Dinitro-2-methylphenol	44	53	%REC	3	3

Test Method	CAS No.	Analyte	Min. of	Max. of	Unit	No. of	No. of Lab
			Result	Result	學能是首任.	Samples	Batches
SW-846 8270	117-84-0	Di-n-octylphthalate	56	65	%REC	3	3
SW-846 8270	53-70-3	Dibenz(a,h)anthracene	55	62	%REC	3	3
SW-846 8270	132-64-9	Dibenzofuran	60	68	%REC	, 3	3
SW-846 8260	124-48-1	Dibromochloromethane	56.45	99	%REC	5	. 5
SW-846 8270	84-66-2	Diethylphthalate	63	67	%REC	3	3
SW-846 8270	131-11-3	Dimethylphthalate	60	66	%REC	3	3
SW-846 8260	100-41-4	Ethylbenzene	48.1	101	%REC	5	5
SW-846 8270	206-44-0	Fluoranthene	52	69	%REC	3	3
SW-846 8270	86-73-7	Fluorene	58	66	%REC	3	3
SW-846 8270	118-74-1	Hexachlorobenzene	59	62	%REC	3	3
SW-846 8260	87-68-3	Hexachlorobutadiene	15.26	103	%REC	5	5
SW-846 8270	87-68-3	Hexachlorobutadiene	58	67	%REC	3	3
SW-846 8270	77-47-4	Hexachlorocyclopentadiene	17	51	%REC	3	3 ·
SW-846 8270	67-72-1	Hexachloroethane	58	70	%REC	3	3 .
SW-846 8270	193-39-5	Indeno(1,2,3-cd)pyrene	- 55	62	. %REC	٠ 3	3
SW-846 6010	7439-89-6	Iron	0	2760	%REC	4	4
SW-846 8270	78-59-1	Isophorone	53	66	%REC	3	3
SW-846 6010	7439-92-1	Lead	92	99	%REC	4	4
SW-846 6010	7439-93-2	Lithium	94	102	%REC	4	4
SW-846 6010	7439-96-5	Manganese	56	157	%REC	4	4
SW-846 6010	7439-97-6	Mercury	75	100 .	%REC	5	5
SW-846 8260	75-09-2	Methylene chloride	64.56	104.9	%REC	5	5
SW-846 6010	7439-98-7	Molybdenum	89	92	%REC	4	4
SW-846 8270	86-30-6	n-Nitrosodiphenylamine	67	. 76	%REC	3	3
SW-846 8270	621-64-7	n-Nitrosodipropylamine	60	69	%REC	3	3
SW-846 8260	91-20-3	Naphthalene	29.8	92	%REC	5	5
SW-846 8270	91-20-3	Naphthalene	57	65	%REC	3	3
SW-846 6010	7440-02-0	Nickel	79	251	%REC	4	4
SW-846 8270	98-95-3	Nitrobenzene	59	72	%REC	3	3
SW-846 8270	87-86-5	Pentachlorophenol	44	50	%REC	3	, 3
SW-846 8270	108-95-2	Phenol	59	69	%REC	3	3
SW-846 8270	129-00-0	Pyrene	57	61	%REC	3	3
SW-846 6010	7782-49-2	Selenium	87	97	%REC	4	4
SW-846 6010	7440-22-4	Silver	92	107	%REC	4	4
SW-846 6010	7440-24-6	Strontium	83	198	%REC	4	4
SW-846 8260	100-42-5	Styrene	46.4	101	%REC	5	5
SW-846 8260	127-18-4	Tetrachloroethene	47.88	100	%REC	5	5
SW-846 6010	7440-31-5	Tin	84	93	%REC	4	4
SW-846 8260	108-88-3	Toluene	54.8	99	%REC	5	5
SW-846 8260	10061-02-6	tràns-1,3-Dichloropropene	48.84	104	%REC	5	5
SW-846 8260	79-01-6	Trichloroethene	58.56	102	%REC	5	5
5 11-0-10 0200	75-01-0	Tremorettiene	20.20	102	WILL.		

Test Method	CAS No.	Analyte	Min. of. Result	Max. of Result	Unit	No. of Samples	No. of Lab Batches
SW-846 6010	11-09-6	Uranium, Total	86	99	%REC	4	4
SW-846 6010	7440-62-2	Vanadium	55	110	%REC	4	4
SW-846 8260	75-01-4	Vinyl chloride	61.62	109.3	%REC	5	. 5
SW-846 8260	1330-20-7	Xylene	47.81	99	%REC	5	5
SW-846 6010	7440-66-6	Zinc	66	104	%REC	4	4

13.2.2 Precision

Matrix Spike Duplicate Evaluation

Laboratory precision is measured through use of MSDs, which is summarized in Table 17. Analytes with the highest relative percent differences (RPDs) were reviewed by comparing the highest sample result to the WRW AL. For analytes with RPDs greater than 35 percent, if the highest sample concentrations were sufficiently below the AL, no further action is needed. For this project, the review indicated decisions were not impacted. However, the decision on whether to remediate the chromium concentration is based on not only an AL comparison but also the results of the SSRS.

Table 17
Sample MSD Evaluation Summary

Sample Wist Evaluation Summary							
Test Method	CAS No.	Analyte	Max of RPD				
SW-846 8260	71-55-6	1,1,1-Trichloroethane	- 51.150				
SW-846 8260	79-34-5	1,1,2,2-Tetrachloroethane	57.039				
SW-846 8260	79-00-5	1,1,2-Trichloroethane	52.846				
SW-846 8260	75-34-3	1,1-Dichloroethane	43.778				
SW-846 8260	75-35-4	1,1-Dichloroethene	43.552				
SW-846 8260	120-82-1	1,2,4-Trichlorobenzene	98.725				
SW-846 8270	120-82-1	1,2,4-Trichlorobenzene	11.570				
SW-846 8260	95-50-1	1,2-Dichlorobenzene	80.597				
SW-846 8260	107-06-2	1,2-Dichloroethane	46.409				
SW-846 8260	78-87-5	1,2-Dichloropropane	49.389				
SW-846 8260	106-46-7	1,4-Dichlorobenzene	77.685				
SW-846 8270	95-95-4	2,4,5-Trichlorophenol	11.765				
SW-846 8270	88-06-2	2,4,6-Trichlorophenol	11.382				
SW-846 8270	120-83-2	2,4-Dichlorophenol	12.903				
SW-846 8270	105-67-9	2,4-Dimethylphenol	13.953				
SW-846 8270	51-28-5	2,4-Dinitrophenol	12.346				
SW-846.8270	121-14-2	2,4-Dinitrotoluene	9.677				
SW-846 8270	606-20-2	2,6-Dinitrotoluene	10.526				
SW-846 8260	78-93-3	2-Butanone	54.943				
SW-846 8270	91-58-7	2-Chloronaphthalene	11.382				
SW-846 8270	95-57-8	2-Chlorophenol	11.382				
SW-846 8270	91-57-6	2-Methylnaphthalene	12.698				

Test Method	CAS No.	Analyte /	Max of RPD
SW-846 8270	95-48-7	2-Methylphenol	14.173
SW-846 8270	88-74-4	2-Nitroaniline	9.524
SW-846 8270	91-94-1	3,3'-Dichlorobenzidine	14.433
SW-846 8270	534-52-1	4,6-Dinitro-2-methylphenol	7.843
SW-846 8270	106-47-8	4-Chloroaniline	27.451
SW-846 8260	108-10-1	4-Methyl-2-pentanone	52.300
SW-846 8270	106-44-5	4-Methylphenol	13.534
SW-846 8270	100-02-7	4-Nitrophenol	9.091
SW-846 8270	83-32-9	Acenaphthene	11.570
SW-846 8260	67-64-1	Acetone	52.748
SW-846 6010	7429-90-5	Aluminum	67.173
SW-846 8270	120-12-7	Anthracene	11.200
SW-846 6010	7440-36-0	Antimony	17.054
SW-846 8082	12674-11-2	Aroclor-1016	5.042
SW-846 8082	11096-82-5	Aroclor-1260	15.674
SW-846 6010	7440-38-2	Arsenic	3.279
SW-846 6010	7440-39-3	Barium	41.951
SW-846 8260	71-43-2	Benzene	46.126
SW-846 8270	56-55-3	Benzo(a)anthracene	14.400
SW-846 8270	50-32-8	Benzo(a)pyrene	12.500
SW-846 8270	205-99-2	Benzo(b)fluoranthene	8.403
SW-846 8270	207-08-9	Benzo(k)fluoranthene	22.951
SW-846 8270	65-85-0	Benzoic acid	40.000
SW-846 8270	100-51-6	Benzyl alcohol	12.308
SW-846 6010	7440-41-7	Beryllium	5.988
SW-846 8270	111-44-4	bis(2-Chloroethyl)ether	15.385
SW-846 8270	39638-32-9	bis(2-Chloroisopropyl)ether	11.570
SW-846 8270	117-81-7	bis(2-Ethylhexyl)phthalate	13.740
SW-846 8260	75-27-4	Bromodichloromethane	52.030
SW-846 8260	75-25-2	Bromoform	59.888
SW-846 8260	74-83-9	Bromomethane	35.294
SW-846 8270	85-68-7	Butylbenzylphthalate	12.308
SW-846 6010	7440-43-9	Cadmium	3.468
SW-846 8260	75-15-0	Carbon disulfide	43.662
SW-846 8260	56-23-5	Carbon tetrachloride	56.221
SW-846 8260	108-90-7	Chlorobenzene	59.428
SW-846 8260	75-00-3	Chloroethane	37.174
SW-846 8260	67-66-3	Chloroform	48.098
SW-846 8260	74-87-3	Chloromethane	, 31.216
SW-846 6010	7440-47-3	Chromium	117.012
SW-846 8270	218-01-9	Chrysene	16.949
	L	L	

Test Method	EAS No.	Analyte	Max of RPD
SW-846 8260	10061-01-5	cis-1,3-Dichloropropene	52.427
SW-846 6010	7440-48-4	Cobalt	4.545
SW-846 6010	7440-50-8	Copper	9.778
SW-846 8270	84-74-2	Di-n-butylphthalate	14.173
SW-846 8270	117-84-0	Di-n-octylphthalate	14.876
SW-846 8270	53-70-3	Dibenz(a,h)anthracene	14.876
SW-846 8270	132-64-9	Dibenzofuran	9.524
SW-846 8260	124-48-1	Dibromochloromethane	53.983
SW-846 8270	84-66-2	Diethylphthalate	7.634
SW-846 8270	131-11-3	Dimethylphthalate	10.526
SW-846 8260	100-41-4	Ethylbenzene	63.362
SW-846 8270	206-44-0	Fluoranthene	22.222
SW-846 8270	86-73-7	Fluorene	9.836
SW-846 8270	118-74-1	Hexachlorobenzene	12.121
SW-846 8270	87-68-3	Hexachlorobutadiene	9.929
SW-846 8260	87-68-3	Hexachlorobutadiene	113.295
SW-846 8270	77-47-4	Hexachlorocyclopentadiene	20.408
SW-846 8270	67-72-1	Hexachloroethane	9.836
SW-846 8270	193-39-5	Indeno(1,2,3-cd)pyrene	14.634
SW-846 6010	7439-89-6	Iron	140.760
SW-846 8270	78-59-1	Isophorone	14.035
SW-846 6010	7439-92-1	Lead	10.204
SW-846 6010	7439-93-2	Lithium	7.547
SW-846 6010	7439-96-5	Manganese	42.520
SW-846 6010	7439-97-6	Mercury	23.529
SW-846 8260	75-09-2	Methylene chloride	40.828
SW-846 6010	7439-98-7	Molybdenum	2.222
SW-846 8270	86-30-6	n-Nitrosodiphenylamine	8.571
SW-846 8270	621-64-7	n-Nitrosodipropylamine	11.024
SW-846 8270	91-20-3	Naphthalene	11.570
SW-846 8260	91-20-3	Naphthalene	90.942
SW-846 6010	7440-02-0	Nickel	70.620
SW-846 8270	98-95-3	Nitrobenzene	14.173
SW-846 8270	87-86-5	Pentachlorophenol	7.692
SW-846 8270	108-95-2	Phenol	14.173
SW-846 8270	129-00-0	Pyrene	16.129
SW-846 6010	7782-49-2	Selenium	3.390
SW-846 6010	7440-22-4	Silver	3.846
SW-846 6010	7440-24-6	Strontium	79.859
SW-846 8260	100-42-5	Styrene	63.910
SW-846 8260	127-18-4	Tetrachloroethene	64.189

Test Method	CAS No.	Analyte	Max of RPD
SW-846 6010	7440-31-5	Tin	3.509
SW-846 8260	108-88-3	Toluene	51.752
SW-846 8260	10061-02-6	trans-1,3-Dichloropropene	52.659
SW-846 8260	79-01-6	Trichloroethene	52.642
SW-846 6010	11-09-6	Uranium, Total	7.821
SW-846 6010	7440-62-2	Vanadium	33.333
SW-846 8260	75-01-4	Vinyl chloride	33.290
SW-846 8260	1330-20-7	Xylene	64.494
SW-846 6010	7440-66-6	Zinc	16.216

Field Duplicate Evaluation

Field duplicate results reflect sampling precision, or overall repeatability of the sampling process. The frequency of field duplicate collection should exceed 1 field duplicate per 20 real samples, or 5 percent. Table 18 indicates that all field duplicate frequencies were greater than 5 percent.

Table 18
Field Duplicate Sample Frequency Summary

Test Method	Real	Duplicate	% Duplicate Samples
Alpha Spectroscopy	19	7	36.84%
Gamma Spectroscopy	61	10	14.93%
SW-846 6010	53	8	15.09%
SW-846 8082	53	8	15.09%
SW-846 8260	45	6	13.33%
SW-846 8270	53	8	15.09%

The RPD values indicate how much variation exists in the field duplicate analyses. EPA data validation guidelines state that "there are no required review criteria for field duplicate analyses comparability" (EPA 1994b). For the DQA, the highest concentrations for analytes with high RPD values (greater than 35 percent) (Table 19) were evaluated. For this project, chromium was high, however, project decisions were not impacted because the decision not to remediate was based on not only an AL comparison but also the results of the SSRS.

Table 19

		uation Summary	
Lab Code	Test Method	Analyte	Max of Result RPD
ESTLDEN	SW-846 8260	1,1,1-Trichloroethane	1.770
ESTLDEN	SW-846 8260	1,1-Dichloroethane	1.770
ESTLDEN	SW-846 8260	1,2,4-Trichlorobenzene	1.869
ESTLDEN	SW-846 8270	1,2,4-Trichlorobenzene	7.895
ESTLDEN	SW-846 8260	1,2-Dichloroethane	1.770
ESTLDEN	SW-846 8270	2,4,5-Trichlorophenol	7.895
ESTLDEN	SW-846 8270	2,4,6-Trichlorophenol	7.895
ESTLDEN	SW-846 8270	2,4-Dichlorophenol	7.895
ESTLDEN	SW-846 8270	2,4-Dimethylphenol	7.895
ESTLDEN	SW-846 8270	2,4-Dinitrophenol	8.000
ESTLDEN	SW-846 8270	2-Chloronaphthalene	7.895
ESTLDEN	SW-846 8270	2-Chlorophenol	7.895 ⁻
ESTLDEN	SW-846 8270	2-Methylnaphthalene	7.895
ESTLDEN	SW-846 8270	2-Methylphenol	7.895
ESTLDEN	SW-846 8270	2-Nitroaniline	8.000
ESTLDEN	SW-846 8270	3,3'-Dichlorobenzidine	6.897
ESTLDEN	SW-846 8270	4,6-Dinitro-2-methylphenol	8.000
ESTLDEN	SW-846 8270	4-Chloroaniline	6.897
ESTLDEN	SW-846 8260	4-Methyl-2-pentanone	4.651
ESTLDEN	SW-846 8270	4-Methylphenol	7.895
ESTLDEN	SW-846 8270	4-Nitrophenol	8.000
ESTLDEN	SW-846 8270	Acenaphthene	8.000
ESTLDEN	SW-846 6010	Aluminum	85.714
ESTLDEN	Alpha Spectroscopy	Americium-241	18.841
ESTLDEN	SW-846 8270	Anthracene	8.000
ESTLDEN	SW-846 8082	Aroclor-1016	8.000
ESTLDEN	SW-846 8082	Aroclor-1221	8.000
ESTLDEN	SW-846 8082	Aroclor-1232	8.000
ESTLDEN	SW-846 8082	Aroclor-1242	8.000
ESTLDEN	SW-846 8082	Aroclor-1254	8.000
ESTLDEN	SW-846 8082	Aroclor-1260	4.878
ESTLDEN	SW-846 6010	Arsenic	41.935
ESTLDEN	SW-846 6010	Barium	58.065
ESTLDEN	SW-846 8260	Benzene	1.869
ESTLDEN	SW-846 8270	Benzo(a)anthracene	7.895
ESTLDEN	SW-846 8270	Benzo(a)pyrene	7.895
ESTLDEN	SW-846 8270	Benzo(b)fluoranthene	7.895
ESTLDEN	SW-846 8270	Benzo(k)fluoranthene	7.895
ESTLDEN	SW-846 8270	Benzoic acid	8.000

Lab Code	Test Method	Method Analyte		
ESTLDEN	SW-846 8270	Benzyl alcohol	6.897	
ESTLDEN	SW-846 6010	Beryllium	30.986	
ESTLDEN	SW-846 8270	bis(2-Chloroethyl)ether	7.895	
ESTLDEN	SW-846 8270	bis(2-Chloroisopropyl)ether	7.895	
ESTLDEN	SW-846 8270	bis(2-Ethylhexyl)phthalate	7.895	
ESTLDEN	SW-846 8260	Bromodichloromethane	1.869	
ESTLDEN	SW-846 8260	Bromoform	1.869	
ESTLDEN	SW-846 8270	Butylbenzylphthalate	7.895	
ESTLDEN	SW-846 6010	Cadmium	16.867	
ESTLDEN	SW-846 8260	Carbon disulfide	1.869	
ESTLDEN	SW-846 8260	Chlorobenzene	1.869	
ESTLDEN	SW-846 8260	Chloroform	1.869	
ESTLDEN	SW-846 6010	Chromium	94.737	
ESTLDEN	SW-846 8270	Chrysene	7.895	
ESTLDEN	SW-846 8260	cis-1,3-Dichloropropene	1.869	
ESTLDEN	SW-846 6010	Cobalt	32.787	
ESTLDEN	SW-846 6010	Copper	127.273	
ESTLDEN	SW-846 8270	Di-n-butylphthalate	7.895	
ESTLDEN	SW-846 8270	Di-n-octylphthalate	7.895	
ESTLDEN	SW-846 8270	Dibenz(a,h)anthracene	7.895	
ESTLDEN	SW-846 8270	Dibenzofuran	7.895	
ESTLDEN	SW-846 8260	Dibromochloromethane	1.869	
ESTLDEN	SW-846 8270	Diethylphthalate	7.895	
ESTLDEN	SW-846 8270	Dimethylphthalate	7.895	
ESTLDEN	SW-846 8270	Fluoranthene	7.895	
ESTLDEN	SW-846 8270	Fluorene	7.895	
ESTLDEN	SW-846 8270	Hexachlorobenzene	7.895	
ESTLDEN	SW-846 8270	Hexachlorobutadiene	7.895	
ESTLDEN	SW-846 8270	Hexachlorocyclopentadiene	7.895	
ESTLDEN	SW-846 8270	Hexachloroethane	7.895	
ESTLDEN	SW-846 8270	Indeno(1,2,3-cd)pyrene	7.895	
ESTLDEN	SW-846 6010	Iron	110.000	
ESTLDEN	SW-846 8270	Isophorone	7.895	
ESTLDEN	SW-846 6010	Lead	57.143	
ESTLDEN	SW-846 6010	Lithium	98.137	
ESTLDEN	SW-846 6010	Manganese	153.982	
ESTLDEN	SW-846 6010	Mercury	21.538	
ESTLDEN	SW-846 8270	n-Nitrosodiphenylamine	7.895	
ESTLDEN	SW-846 8270	n-Nitrosodipropylamine	7.895	
ESTLDEN	SW-846 8260	Naphthalene	1.869	
ESTLDEN	SW-846 8270	Naphthalene	7.895	

Lab Code	Test Method	Analyte	Max of Result RPD
ESTLDEN	SW-846 6010	Nickel	127.869
ESTLDEN	SW-846 8270	Nitrobenzene	7.895
ESTLDEN	SW-846 8270	Pentachlorophenol	8.000
ESTLDEN	SW-846 8270	Phenol	7.895
ESTLDEN	Alpha Spectroscopy	Plutonium-239/240	39.612
ESTLDEN	SW-846 8270	Pyrene	7.895
ESTLDEN	SW-846 6010	Strontium	115.493
ESTLDEN	SW-846 8260	Styrene	1.869
ESTLDEN	SW-846 8260	Tetrachloroethene	1.770
ESTLDEN	SW-846 8260	Toluene	1.869
ESTLDEN	SW-846 8260	trans-1,3-Dichloropropene	1.770
ESTLDEN	SW-846 8260	Trichloroethene	1.869
ESTLDEN	SW-846 6010	Vanadium	90.598
ESTLDEN	SW-846 6010	Zinc	104.094

13.2.3 Completeness

Based on original project DQOs, a minimum of 25 percent of ER Program analytical (and radiological) results must be formally verified and validated. Of that percentage, no more than 10 percent of the results may be rejected, which ensures that analytical laboratory practices are consistent with quality requirements. Table 20 shows that for this project all records were verified but none of the real data were validated. However, a QC sample (from Sampling Location CZ41-001 within Trench T-6) was validated. Also, a confirmation sample from Trench T-7, one of the East Trenches, was validated. In addition, the ER Program V&V goal of 25 percent is being met. During the nine-month 900-12 characterization and remediation period, data associated with IHSS Groups 000-2, 300-2, 400-2, 400-6, 400-7, 500-1, 500-2, 500-4, 500-5, 600-3, 600-4, 600-5, 700-2, 700-6, 700-7, 700-8, 700-11 and 900-2 were validated. Also, no records were rejected.

Table 20
Validation and Verification Summary

	vanuation and verification Summary						
Validation Qualifier Code	Total of CAS Number	Alpha Spectroscopy	Gamma Spectroscopy	SW-846 6010	SW-846 8082	SW-846 8260	SW-846
J1	309	0	0	309	0	0	0
JB1	7	. 0	0	0_	0	7	0
UJ1	109	0	0 _	52	0	57	0_
V1	6017	95	201	858	371	1736	2756
Total	6442	95	201	1219	371	1800	2756
Verified	6442	95	201	1219	371	1800	2,756
% Verified	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%

13.2.4 Sensitivity

RLs, in units of ug/kg for organics, mg/kg for metals, and pCi/g for radionuclides, were compared with RFCA WRW ALs. Adequate sensitivities of analytical methods were

attained for all COCs that affected remediation decisions. "Adequate" sensitivity is defined as an RL less than an analyte's associated AL, typically less than one-half the AL.

13.3 Summary of Data Quality

RPDs greater than 35 percent indicate the sampling precision limits of some analytes have been exceeded. Also, the validation percentages for the project are below 25 percent, however, the ER Program V&V goal of 25 percent is being met. Data collected and used for IHSS Group 900-12 are adequate for decision-making.

14.0 CONCLUSION

Results of the accelerated action justify NFAA. Justification is based on the reasons summarized below.

- No further accelerated action required based on surface soil data. All residual surface soil concentrations are less than WRW ALs.
- No further accelerated action required based on the SSRS. Subsurface soil in the
 area is not subject to significant erosion. Residual chemical concentrations and
 radionuclide activities that exceed their WRW ALs will be further evaluated in
 the AAESE and the ecological risk assessment portion of the Sitewide CRA. All
 other residual subsurface soil concentrations are less than WRW ALs.
- No further accelerated action based on the stewardship evaluation.

15.0 REFERENCES

DOE, 1992-2003, Historical Release Reports for the Rocky Flats Plant, Golden, Colorado.

DOE, 1996, Draft Trenches and Mound Site Characterization Report, Rocky Flats Environmental Technology Site, Golden, Colorado, September.

DOE, 1999a, 903 Pad/Ryan's Pit Plume Project Completion Report, Fiscal Year 1999, Rocky Flats Environmental Technology Site, Golden, Colorado, August.

DOE, 1999b, Order 414.1A, Quality Assurance.

DOE, 2001, Rocky Flats Environmental Technology Site Buffer Zone Data Summary Report, Golden, Colorado, July.

DOE, 2002a, Buffer Zone Sampling and Analysis Plan, Rocky Flats Environmental Technology Site, Golden, Colorado, June.

DOE, 2002b, First Quarter RFCA Groundwater Monitoring Report for Calendar Year 2002, Rocky Flats Environmental Technology Site, Golden, Colorado, November.

DOE, 2003a, Buffer Zone Sampling and Analysis Plan FY04 Addendum #BZ-04-02, Rocky Flats Environmental Technology Site, Golden, Colorado, November.

DOE, 2003b, Environmental Restoration RFCA Standard Operating Protocol for Routine Soil Remediation, Rocky Flats Environmental Technology Site, Golden, Colorado. June.

DOE, 2003c, RFETS Automated Surface-Water Monitoring Report, Water Year 2001, Rocky Flats Environmental Technology Site, Golden, Colorado, May.

DOE, 2004, Environmental Restoration RFCA Standard Operating Protocol Notification #04-13, IHSS Group 900-12, Rocky Flats Environmental Technology Site, Golden, Colorado, June.

DOE, CDPHE and EPA, 2003, Modifications to the Rocky Flats Cleanup Agreement Attachment, U.S. Department of Energy, Colorado Department of Public Health and Environment, and U.S. Environmental Protection Agency, Rocky Flats Environmental Technology Site, Golden, Colorado, June.

EPA, 1994a, Guidance for the Data Quality Objective Process, QA/G-4.

EPA, 1994b, USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, 540/R-94/012.

EPA, 1994c, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, 540/R-94/013.

EPA, 1998, Guidance for the Data Quality Assessment Process, Practical Methods for Data Analysis, QA/G-9.

EPA, 2004, Environmental Restoration RFCA Standard Operating Protocol for Routine Soil Remediation FY04 Notification #04-13, IHSS Group 900-12, Approval Letter, June 17.

K-H, 2002, General Guidelines for Data Verification and Validation, DA-GR01-v2, Rocky Flats Environmental Technology Site, Golden, Colorado, October.

K-H, 2002, V&V Guidelines for Isotopic Determinations by Alpha Spectrometry, DA-RC01-v2, Rocky Flats Environmental Technology Site, Golden, Colorado, October.

K-H, 2002, V&V Guidelines for Volatile Organics, DA-SS01-v3, Rocky Flats Environmental Technology Site, Golden, Colorado, October.

K-H, 2002, V&V Guidelines for Semivolatile Organics, DA-SS02-v3, Rocky Flats Environmental Technology Site, Golden, Colorado, October.

K-H, 2002, V&V Guidelines for Metals, DA-SS05-v3, Rocky Flats Environmental Technology Site, Golden, Colorado, October.

Lockheed-Martin, 1997, Evaluation of Radiochemical Data Usability, ES/ER/MS-5.

Appendix A Correspondence

			
Date/Time:	September 2, 2004	· .	
Site Contact(s):	DOE: Norma Castaneda	a	
	K-H: Lee Norland		
	K-H Team: Susan Serre	eze	,
		· ,	•
Phone:	303/966-5223		•
Regulatory Contact:	CDPHE: Dave Kruche	k, Harlan Ainscougl	h,
	Elizabeth Pottorff	•	
-	EPA: Sam Garcia, Larry	y Kimmel	
Phone:	303/692-2035-CDPHE		
	303/	•	•
		•	•
T	WIGG C 000 10 C	. 1.	
Purpose of Contact:	IHSS Group 900-12 Sar	mpling.	
Trench 11 - 3 biased s	samples along the length of th	of the trench.	e analyzed for radionuclides
Contact Record Prep	ared By: Susan Serreze		
			
Required Distribution	on:	•	Additional Distribution:
M. Aguilar, USEPA		ster, DOE-RFFO	H. Ainscough, CDPHE
S. Bell, DOE-RFFO			J. Walstrom, K-H RISS
J. Berardini, K-H S. Nesta, K-H RI		-H RISS	
B. Birk, DOE-RFFC	L. Norland,	K-H RISS	
L. Brooks, K-H ESS	K. North, K	-H ESS	
L. Butler, K-H RISS	· · · · · · · · · · · · · · · · · · ·		
G. Carnival, K-H RI	·		
N. Castaneda, DOE-	ISS A. Primrose	e, K-H RISS	
		•	
C. Deck, K-H Legal	-RFFO R. Schassbu	urger, DOE-RFFO	

Date/Time:	July 15, 2004/2:4	
Site Contact(s): Phone:	Annette Primrose 303 966-4385	
Regulatory Contact: Phone: Agency:	Sam Garcia 303 312-6247 EPA	Harlen Ainscough 303 692-3337 CDPHE
Purpose of Contact:	Backfill of Trencl	n 6 at IHSS Group 900-12
Trench 6 at IHSS Graubmitted for offsite	oup 900-12 were l analyses. Excavat	on boundary and the north, south and east sides of below action levels and samples have been ion of the west side continues. Based on the will be backfilled with the exception of the active
Contact Record Prep Required Distribution:	ared By: Annette P	rimrose Additional Distribution:
M. Aguilar, USEPA H. Ainscough, CDPHE S. Bell, DOE-RFPO J. Berardini, K-H B. Birk, DOE-RFPO L. Brooks, K-H ESS L. Butler, K-H RISS G. Carnival, K-H RISS N. Castaneda, DOE-RI C. Deck, K-H Legal N. Demos, SSOC S. Gunderson, CDPHE M. Keating, K-H RISS G. Kleeman, USEPA D. Kruchek, CDPHE J. Legare, DOE-RFPO	J. Mead, J. S. Nesta, L. Norlan K. North, E. Pottori A. Primro R. Schass FPO S. Serrezo D. Shelto C. Spreng S. Surovo J. Walstro K. Wieme C. Zahm,	K-H RISS Sam Garcia, USEPA

ER	REGULATORY	Y CONTACI	RECORD
Date/Time:	July 21, 2004/1615	<u> </u>	
Site Contact(s):	Annette Primrose		
Phone:	303 966-4385		
•	Sam Garcia	Harlen Ainsco	ough
Phone:	303 312-6247	303 692-3337	
Agency:	EPA	CDPHE	
Purpose of Contact:	Backfill of Trench 6 a	and Trench 8 at II	HSS Group 900-12
Group 900-12 are belo	w action levels and	the sample has	oundary of Trench 6 at IHS been submitted for offsite en section of the excavation
at IHSS Group 900-12 offsite analyses. Based	are below action led on the screening re	vels and the same sults, the excava	scavation boundary of Tren rples have been submitted f ation will be backfilled.
Contact Record Prepare	red By: Annette Primi	rose 	
Required Distribution:			Additional Distribution:
M. Aguilar, USEPA	D. Mayo, K-I	H RISS	Sam Garcia, USEPA
H. Ainscough, CDPHE	J. Mead, K-H	I ESS	Gerry Kelly, K-H RISS
S. Bell, DOE-RFPO	S. Nesta, K-H		
J. Berardini, K-H	L. Norland, K		<u> </u>
B. Birk, DOE-RFPO	K. North, K-I		
L. Brooks, K-H ESS	E. Pottorff, C		
L. Butler, K-H RISS	A. Primrose,		
G. Carnival, K-H RISS		ger, DOE-RFPO	
N. Castaneda, DOE-RFI			
C. Deck, K-H Legal	D. Shelton, K		-
N. Demos, SSOC	C. Spreng, Cl	DPHE	

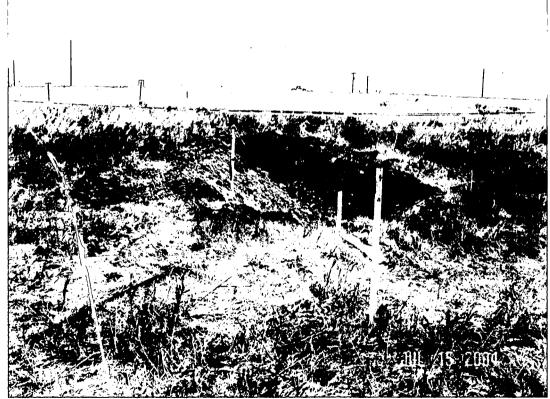
S. Gunderson, CDPHE M. Keating, K-H RISS

D. Kruchek, CDPHE

J. Legare, DOE-RFPO

S. Surovchak, DOE-RFPO

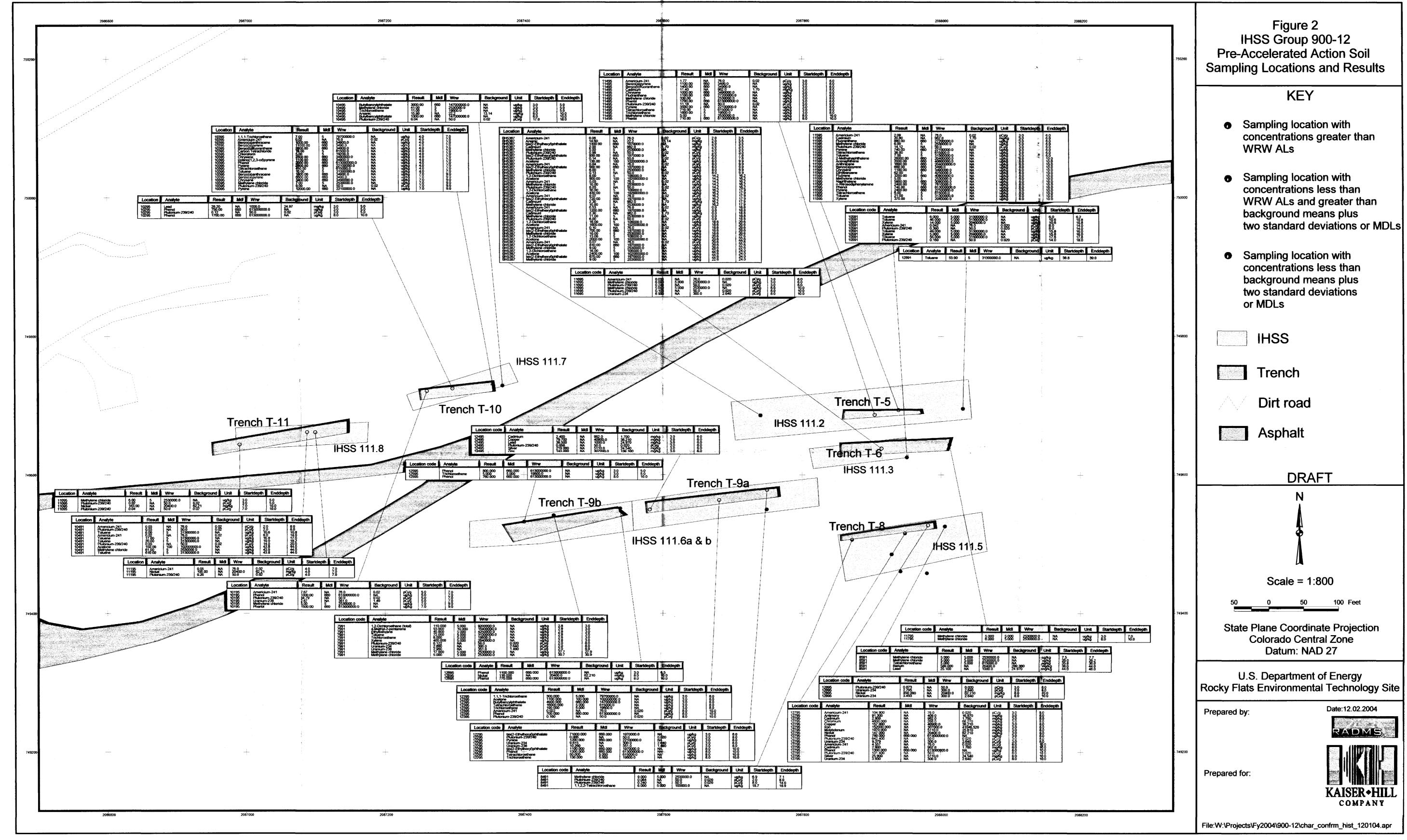
J. Walstrom, K-H RISS

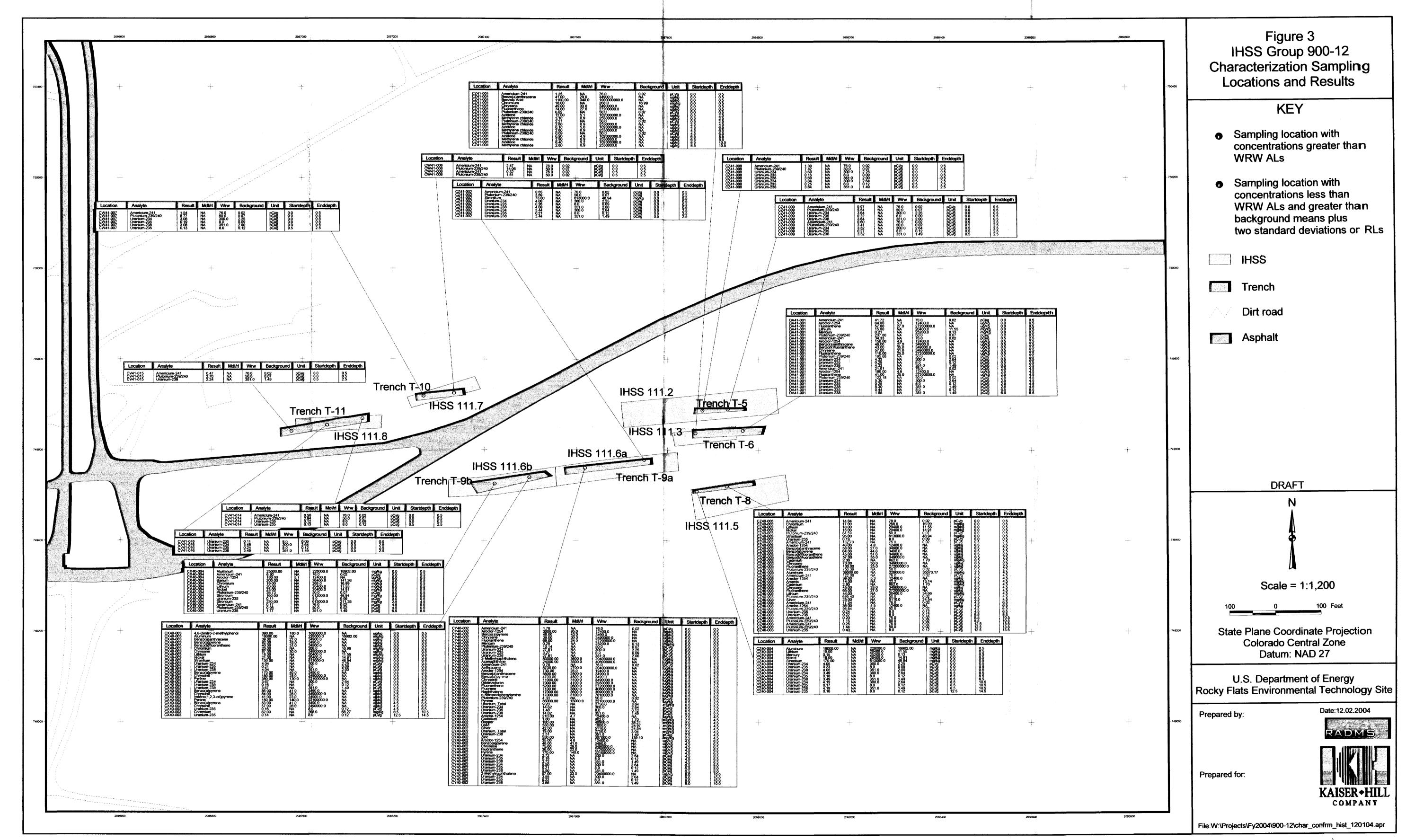

K. Wiemelt, K-H RISS C. Zahm, K-H Legal

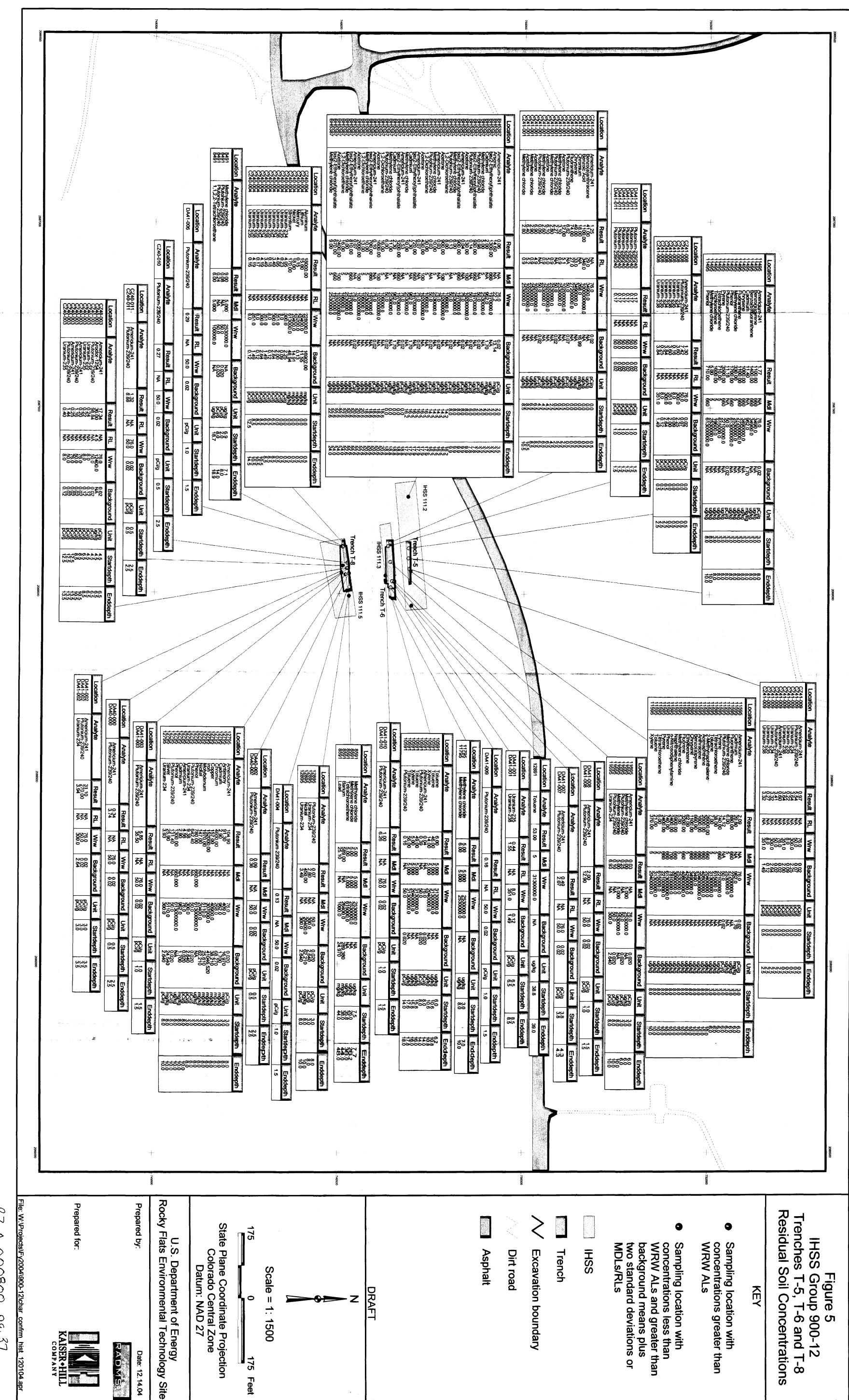
Date/Time:	September 2	2, 2004		
Site Contact(s):	K-H: Lee N			
	K-H Team:	Susan Serreze		
Phone:	303/966-522	23	,	
Regulatory Contact:	Elizabeth Po		ugh,	
Phone:	EPA: Sam C 303/692-203 303/	Garcia, Larry Kimmel 35-CDPHE		
				
Purpose of Contact:	IHSS Group	900-12 Sampling.		
		·		
Trench 11 - 3 biased sa	mples along thamples along amples along			dionuclides.
Contact Record Prep	ared By: Susa	an Serreze	· ·	·
Required Distributio M. Aguilar, USEPA S. Bell, DOE-RFFO J. Berardini, K-H		R. McCallister, DOE-RFFO J. Mead, K-H ESS S. Nesta, K-H RISS	Additional D H. Ainscougl J. Walstrom,	h, CDPHE
B. Birk, DOE-RFFO		L. Norland, K-H RISS		
L. Brooks, K-H ESS	. ·	K. North, K-H ESS		
L. Butler, K-H RISS		E. Pottorff, CDPHE		
G. Carnival, K-H RI		A. Primrose, K-H RISS		
N. Castaneda, DOE-		R. Schassburger, DOE-RFF(<i></i>	
C. Deck, K-H Legal		S. Serreze, K-H RISS	-	<u>.</u>

Appendix B Project Photographs

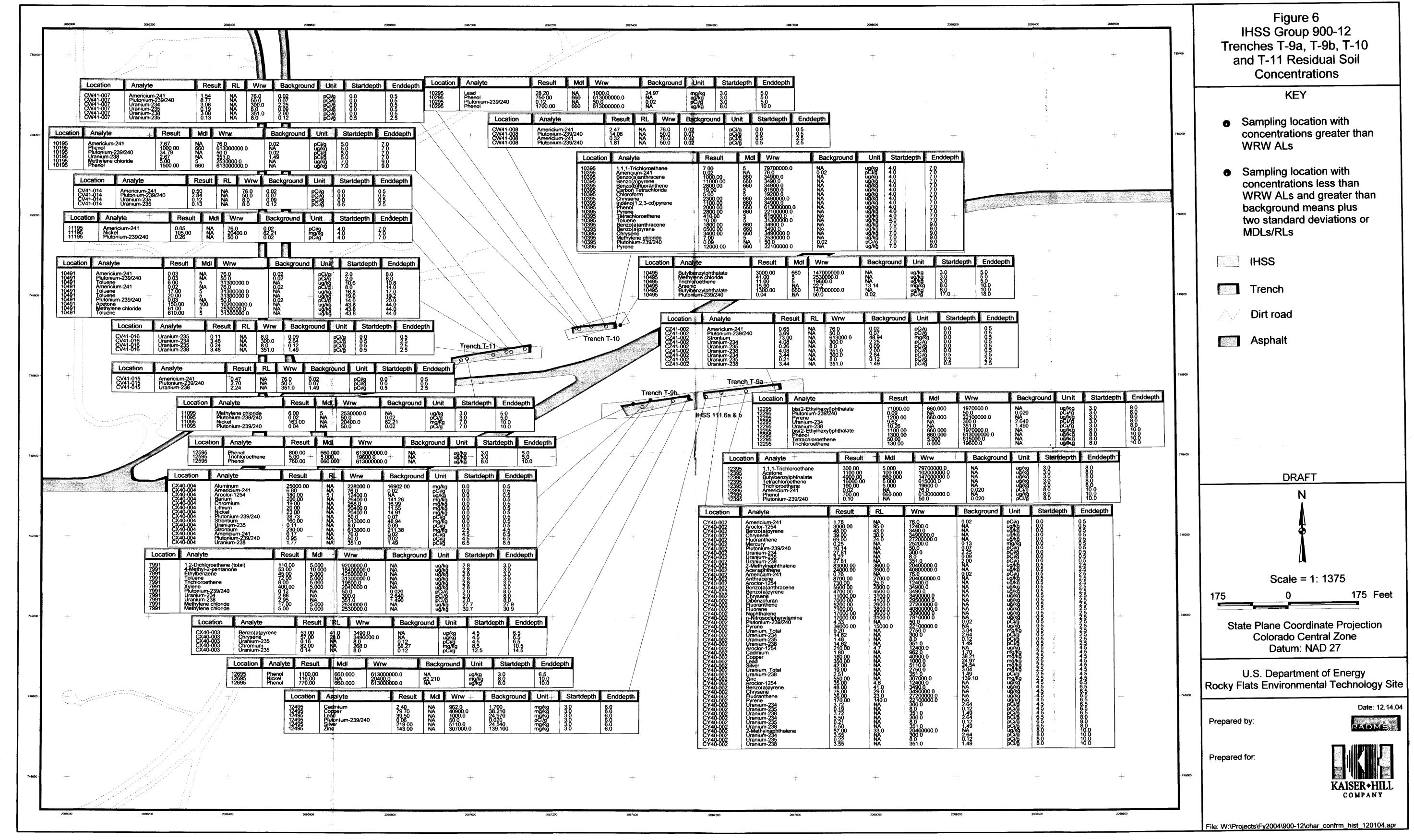
Trench T-6, Working West




Trench T-8, Start of Excavation, Looking East


COMPACT DISC CONTAINING STANDARDIZED REAL AND QUALITY CONTROL DATA

ACCELERATED ACTION DATA



BZ-A-000800 pg. 37

